The present study documents the variability of surface sensible heat flux over Northwest China using station observations for the period 1961 2000.It is found that the afternoon and nighttime sensible heat flux variat...The present study documents the variability of surface sensible heat flux over Northwest China using station observations for the period 1961 2000.It is found that the afternoon and nighttime sensible heat flux variations are remarkably different.The variability of the instant flux in the afternoon is much larger than in the nighttime.The afternoon and nighttime flux anomalies tend to be opposite.The diurnal and seasonal dependence of sensible heat flux variations is closely related to the diurnal cycle of mean land-air temperature difference.The relationship of sensible heat flux with land-air temperature difference based on the instant value differs from that based on the daily mean.The present study indicates the importance for the models to properly simulate mean land-air temperature difference and its diurnal and seasonal variations in order to capture surface sensible heat flux variability over Northwest China and predicts its plausible impacts on climate.展开更多
Interannual variations of Pacific North Equatorial Current (NEC) transport during eastern- Pacific E1 Nifios (EP-EI Nifios) and central-Pacific E1 Nifios (CP-E1 Nifios) are investigated by composite analysis wit...Interannual variations of Pacific North Equatorial Current (NEC) transport during eastern- Pacific E1 Nifios (EP-EI Nifios) and central-Pacific E1 Nifios (CP-E1 Nifios) are investigated by composite analysis with European Centre for Medium-Range Weather Forecast Ocean Analysis/Reanalysis System 3. During EP-E1 Nifio, NEC transport shows significant positive anomalies from the developing to decay phases, with the largest anomalies around the mature phase. During CP-EI Nifio, however, the NEC transport only shows positive anomalies before the mature phase, with much weaker anomalies than those during EP-El Nifio. The NEC transport variations are strongly associated with variations of the tropical gyre and wind forcing in the tropical North Pacific. During EP-E1 Nifio, strong westerly wind anomalies and positive wind stress curl anomalies in the tropical North Pacific induce local upward Ekman pumping and westward-propagating upwelling Rossby waves in the ocean, lowering the sea surface height and generating a cyclonic gyre anomaly in the western tropical Pacific. During CP-E1 Nifio, however, strength of the wind and associated Ekman pumping velocity are very weak. Negative sea surface height and cyclonic flow anomalies are slightly north of those during EP El Nino.展开更多
The correlation between summertime Nino3.4 index and western North Pacific(WNP)summer monsoon index has strikingly enhanced since the early 1990 s,with nonsignificant correlation before the early1990 s but significant...The correlation between summertime Nino3.4 index and western North Pacific(WNP)summer monsoon index has strikingly enhanced since the early 1990 s,with nonsignificant correlation before the early1990 s but significant correlation afterward.This observed interdecadal change around the 1990 s may be associated with more frequent occurrences of central Pacific(CP)El Nino and the interdecadal changes in ENSO-associated SST anomalies.During the post-1990 s period(the pre-1990 s period),highly noticeable tropical Atlantic(Indian)Ocean SST anomalies tend to co-occur with the summertime Nino3.4 SST anomalies.The concurrent tropical Atlantic(Indian)Ocean SST anomalies could constructively reinforce(destructively mitigate)the WNP monsoon circulation anomalies induced by the summertime Nino3.4 SST,thus boosting(muting)the correlation between summertime Nino3.4 SST and WNP monsoon.In addition,the faster decaying pace of preceding-winter El Nino after the 1990 s,which may have been mainly induced by the influences from the spring tropical North Atlantic SST anomalies,could also have contributed to the enhanced correlation between the summertime Nino3.4 index and WNP monsoon.These results suggest that the enhanced influences from the tropical Atlantic SST may have triggered the intensified correlation between summertime ENSO and WNP monsoon since the early 1990 s.展开更多
Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using ...Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using the Empirical Orthogonal Function(EOF) method. We find that the SLA variability has two dominant modes. The Sea Level Changing Mode(SLCM) occurs mainly during La Ni?a years, with high SLA extension from west of Luzon to the eastern coast of Vietnam along the central basin of the SCS, and is likely induced by the increment of the ocean heat content. The Anticyclonic Eddy Mode(AEM) occurs mainly during El Ni?o years and appears to be triggered by the negative wind curl anomalies within the central SCS. In addition, the spring high SLA in the western SCS experienced a quasi-decadal change during 1993–2012; in other words, the AEM predominated during 1993–1998 and 2002–2005, while the La Ni?a-related SLCM prevailed during 1999–2001 and 2006–2012. Moreover, we suggest that the accelerated sea level rise in the SCS during 2005–2012 makes the SLCM the leading mode over the past two decades.展开更多
The research aimed to analyze soil variability induced by parent materials for oil palm in West Malaysia. The research results can provide basic information on potential reserves of nutrients to improve soil productiv...The research aimed to analyze soil variability induced by parent materials for oil palm in West Malaysia. The research results can provide basic information on potential reserves of nutrients to improve soil productivity for oil palm. Soil samples were collected from two locations (granite soils and basalt soils). The collected soil samples were completely analyzed in laboratory. The research results showed that based on mineral resistance to weathering (sand and silt mineral sizes), mineral weathering of granite and basalt is divided into three categories, i.e., very slow weathered mineral (quartz and muscovite), slowly weathered mineral (K-feldspar, Na and Ca-feldspar and biotite), and easily weathered mineral (hornblende, augit, olivine, dolomite, calcite and gypsum) Losing mineral during weathering process from granite to clay is determined by containing mineral in rocks. Such minerals (CaO, Na:O, KzO, MgO and SiO2) loosed 100%, 95.0%, 83.5%, 74.7% and 52.5%, respectively, but Fe203 is disappeared only 14.4%. Soil properties characters of granite soil is more acid, has very low to low chemical soil fertility and is dominated by sand fraction, furthermore basalt soil is acid, has low to moderate chemical soil fertility and is dominated by clay fraction. Granite and basalt soils are able to produce FFB of oil palm (Fresh Fruit Bunches) 13-18 ton/ha in a year and 19-24 ton/ha in a year, respectively. The production difference of both soils is around 6.0 ton/ha in a year.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2009CB421405)the National Natural Science Foundation of China (Grant Nos.40905027 and 40730952)Program of Knowledge Innovationfor the 3rd period of Chinese Academy of Sciences (Grant No.KZCX2-YW-220)
文摘The present study documents the variability of surface sensible heat flux over Northwest China using station observations for the period 1961 2000.It is found that the afternoon and nighttime sensible heat flux variations are remarkably different.The variability of the instant flux in the afternoon is much larger than in the nighttime.The afternoon and nighttime flux anomalies tend to be opposite.The diurnal and seasonal dependence of sensible heat flux variations is closely related to the diurnal cycle of mean land-air temperature difference.The relationship of sensible heat flux with land-air temperature difference based on the instant value differs from that based on the daily mean.The present study indicates the importance for the models to properly simulate mean land-air temperature difference and its diurnal and seasonal variations in order to capture surface sensible heat flux variability over Northwest China and predicts its plausible impacts on climate.
基金Supported by the National Basic Research Program of China(973 Program)(Nos.2012CB417401,2013CB956202)the Key Project of National Natural Science Foundation of China(No.41330963)the Fundamental Research Funds for the Central Universities(No.201513030)
文摘Interannual variations of Pacific North Equatorial Current (NEC) transport during eastern- Pacific E1 Nifios (EP-EI Nifios) and central-Pacific E1 Nifios (CP-E1 Nifios) are investigated by composite analysis with European Centre for Medium-Range Weather Forecast Ocean Analysis/Reanalysis System 3. During EP-E1 Nifio, NEC transport shows significant positive anomalies from the developing to decay phases, with the largest anomalies around the mature phase. During CP-EI Nifio, however, the NEC transport only shows positive anomalies before the mature phase, with much weaker anomalies than those during EP-El Nifio. The NEC transport variations are strongly associated with variations of the tropical gyre and wind forcing in the tropical North Pacific. During EP-E1 Nifio, strong westerly wind anomalies and positive wind stress curl anomalies in the tropical North Pacific induce local upward Ekman pumping and westward-propagating upwelling Rossby waves in the ocean, lowering the sea surface height and generating a cyclonic gyre anomaly in the western tropical Pacific. During CP-E1 Nifio, however, strength of the wind and associated Ekman pumping velocity are very weak. Negative sea surface height and cyclonic flow anomalies are slightly north of those during EP El Nino.
基金supported by the National Key Research and Development Program of China [grant number2018YFC1506903]the National Natural Science Foundation of China [grant number 41776031]+2 种基金the Guangdong Natural Science Foundation [grant number 2015A030313796]the program for scientific research start-up funds of Guangdong Ocean Universitythe Foundation for Returned Scholars of the Ministry of Education of China
文摘The correlation between summertime Nino3.4 index and western North Pacific(WNP)summer monsoon index has strikingly enhanced since the early 1990 s,with nonsignificant correlation before the early1990 s but significant correlation afterward.This observed interdecadal change around the 1990 s may be associated with more frequent occurrences of central Pacific(CP)El Nino and the interdecadal changes in ENSO-associated SST anomalies.During the post-1990 s period(the pre-1990 s period),highly noticeable tropical Atlantic(Indian)Ocean SST anomalies tend to co-occur with the summertime Nino3.4 SST anomalies.The concurrent tropical Atlantic(Indian)Ocean SST anomalies could constructively reinforce(destructively mitigate)the WNP monsoon circulation anomalies induced by the summertime Nino3.4 SST,thus boosting(muting)the correlation between summertime Nino3.4 SST and WNP monsoon.In addition,the faster decaying pace of preceding-winter El Nino after the 1990 s,which may have been mainly induced by the influences from the spring tropical North Atlantic SST anomalies,could also have contributed to the enhanced correlation between the summertime Nino3.4 index and WNP monsoon.These results suggest that the enhanced influences from the tropical Atlantic SST may have triggered the intensified correlation between summertime ENSO and WNP monsoon since the early 1990 s.
基金Supported by the National Natural Science Foundation of China(Nos.41306026,41176025,41176031)the Scientific Research Foundation of the Third Institute of Oceanography,SOA(No.2008014)+2 种基金the Chinese Academy of Sciences Strategic Leading Science and Technology Projects(No.XDA1102030104)the Global Change and Ocean-Atmosphere Interaction(No.GASI-03-01-01-03)the National Special Research Fund for Non-Profit Marine Sector(No.201005005-2)
文摘Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using the Empirical Orthogonal Function(EOF) method. We find that the SLA variability has two dominant modes. The Sea Level Changing Mode(SLCM) occurs mainly during La Ni?a years, with high SLA extension from west of Luzon to the eastern coast of Vietnam along the central basin of the SCS, and is likely induced by the increment of the ocean heat content. The Anticyclonic Eddy Mode(AEM) occurs mainly during El Ni?o years and appears to be triggered by the negative wind curl anomalies within the central SCS. In addition, the spring high SLA in the western SCS experienced a quasi-decadal change during 1993–2012; in other words, the AEM predominated during 1993–1998 and 2002–2005, while the La Ni?a-related SLCM prevailed during 1999–2001 and 2006–2012. Moreover, we suggest that the accelerated sea level rise in the SCS during 2005–2012 makes the SLCM the leading mode over the past two decades.
文摘The research aimed to analyze soil variability induced by parent materials for oil palm in West Malaysia. The research results can provide basic information on potential reserves of nutrients to improve soil productivity for oil palm. Soil samples were collected from two locations (granite soils and basalt soils). The collected soil samples were completely analyzed in laboratory. The research results showed that based on mineral resistance to weathering (sand and silt mineral sizes), mineral weathering of granite and basalt is divided into three categories, i.e., very slow weathered mineral (quartz and muscovite), slowly weathered mineral (K-feldspar, Na and Ca-feldspar and biotite), and easily weathered mineral (hornblende, augit, olivine, dolomite, calcite and gypsum) Losing mineral during weathering process from granite to clay is determined by containing mineral in rocks. Such minerals (CaO, Na:O, KzO, MgO and SiO2) loosed 100%, 95.0%, 83.5%, 74.7% and 52.5%, respectively, but Fe203 is disappeared only 14.4%. Soil properties characters of granite soil is more acid, has very low to low chemical soil fertility and is dominated by sand fraction, furthermore basalt soil is acid, has low to moderate chemical soil fertility and is dominated by clay fraction. Granite and basalt soils are able to produce FFB of oil palm (Fresh Fruit Bunches) 13-18 ton/ha in a year and 19-24 ton/ha in a year, respectively. The production difference of both soils is around 6.0 ton/ha in a year.