The developmental activities, particularly the construction of hydroelectric projects are causing a great loss of biodiversity in the Indian Himalayan Region. The Himaehal Pradesh, a part of IHR is well known for the ...The developmental activities, particularly the construction of hydroelectric projects are causing a great loss of biodiversity in the Indian Himalayan Region. The Himaehal Pradesh, a part of IHR is well known for the development of hydroelectric projects. The Parbati H.E. Project is amongst the major projects of the State. The different stages of the project are all causing loss of biodiversity of the area. Stage Ⅲ of the Parbati H.E. Project is a run of the river scheme on the Sainj River downstream of Power House of Parbati H.E. Project Stage Ⅱ. The project shall utilize regulated discharge of Parbati H.E. Project Stage Ⅱ and inflow of River Sainj for power generation, and has been contemplated as a peaking station operating in tandem with Stage Ⅱ. The present study has been undertaken to see the impact of hydroelectric project on the biodiversity, particularly on medicinal plants. A total of 104 species of medicinal plants, belonging to different life forms, i.e., trees (23 spp.), shrubs (22 spp.), herbs (57 spp.) and ferns (2 spp.) were recorded. The species have been analyzed and studied for their distribution, classification, altitudinal zones, part (s) used, indigenous uses, nativity, endemism and rarity.Different parts of these species, such as whole plants, roots (including rhizomes and tubers), leaves, flowers, fruits, seeds, stems, barks, spikes, nuts and insect galls are used by the inhabitants for curing various diseases and ailments. 3o species are native to the Himalayan region, 9 species native to the Himalayan region and adjacent countries also and 65 species are non-natives. 9 species are near endemics. Considering the whole Himalaya as a biogeographie unit (sensu lato), the near endemics are endemic to the Himalaya. Among these species, Zanthoxylum armature is categorized as Endangered and Valeriana wallichii as Vulnerable. Hedychium spicatum, Rhus javanica, Berberis lycium, Thalictrum foliolossum, Salvia lanata, Rubia cordifolia and Bergenia ligulata may be considered as threatened species due to their over exploitation for trade. 90 species are propagated by seeds, 8 species by seeds and rhizomes/roots/tubers, 4 species by seeds and cuttings, and 2 species by sori. A management plan for the cultivation and conservation of the medicinal plants in the dam submergence area, and the commercially viable medicinal plants with high value in the catchment area is suggested.展开更多
The finfish and shellfish resources were assessed quantitatively and qualitatively in regard to their abundance in creek waters at three sites within a period of two years, fi'om January 1999 to December 2000, in the...The finfish and shellfish resources were assessed quantitatively and qualitatively in regard to their abundance in creek waters at three sites within a period of two years, fi'om January 1999 to December 2000, in the western mangrove areas of Kachchh. The catch rate varied from 0.69 to 6.99kg·h^-1. It was low during monsoon (July to October), which could be due to the freshwater-flow-induced salinity reduction in all the sites. Among 38 species recorded, 5 were shellfish and 33 were finfish. The spawning period of fishes was found to be during summer and early monsoon period (May to August). Surface water temperatures varied from 17℃ to 37 ℃. Salinity values varied from 34 to 44 and the pH ranged between 7 and 8.9. Variation in dissolved oxygen content was from 3.42 to 5.85 mL L^-1. The high fishery densities in these semi arid mangrove creek areas were recorded during monsoon and early winter season.展开更多
This study investigates the local air-sea relationship associated with the two dominant intraseasonal oscillation(ISO) components during the spring-to-summer transition and compares their properties using multiple a...This study investigates the local air-sea relationship associated with the two dominant intraseasonal oscillation(ISO) components during the spring-to-summer transition and compares their properties using multiple air-sea variables in the period 1998-2013.The amplitude of percentage variance in SST in periods of 10-20 and 30-60 days are comparable,but the locations of the maxima differ.A strong percentage variance in the 10-20-day SST is evident in the equatorial western Pacific,whereas for the 30-60-day SST the strongest ratio occurs in the North Indian Ocean(NIO),South China Sea(SCS),and North Pacific.Over the NIO,SCS,and Philippine Sea,there are significant correlations between SST and precipitation for both 10-20-day and 30-60-day ISOs.In contrast,the correlations between SST and surface heat fluxes cover a broader region and have larger coefficients.Thus,the atmospheric variables and surface heat fluxes show larger variations within the higher frequency band.However,the amplitude of the correlation coefficients between SST and surface heat fluxes,and SST and rainfall,is greater in the lower frequency band.The corresponding time lags for the different variables reveal that a strong local air-sea interaction is indicated over the NIO,SCS,and western North Pacific,from April to June in both timescales;however,the strength of the air-sea relationship depends on the region and variable.展开更多
A zonal teleconnection has been found along the Asian jet over the Eurasian continent during summer. In this study, the authors investigated circulation anomalies in the extratropics, in particular for the zonal telec...A zonal teleconnection has been found along the Asian jet over the Eurasian continent during summer. In this study, the authors investigated circulation anomalies in the extratropics, in particular for the zonal teleconnection, under different combinations of subtropical convection anomalies over the northern Indian continent (IND) and the westem North Pacific (WNP). The outof-phase configuration (i.e., stronger (weaker) IND convection and weaker (stronger) WNP convection) was found to be more common than the in-phase configuration (i.e., stronger (weaker) IND convection and stronger (weaker) WNP convection), which is consistent with previous results. Composite results indicated that circulation anomalies for out-of-phase configurations of 30-60-day convection oscillations are much stronger in the middle latitudes than those for in-phase configurations. In addition, zonal teleconnection patterns are predominant for the out-of-phase configurations, particularly for the configuration of strong IND convection and weak WNP convec- tion; however, they are either weak or obscure for the in-phase configurations. These results suggest that the zonal teleconnection pattem along the Asian jet is dependent on different combinations of the 1ND and WNP subtropical convection anomalies.展开更多
The intensity of interannual variability(IIV)of the monsoon and monsoon–ENSO biennial relationship(MEBR)were examined and compared for both the Indian summer monsoon(ISM)and western North Pacific summer monsoon(WNPSM...The intensity of interannual variability(IIV)of the monsoon and monsoon–ENSO biennial relationship(MEBR)were examined and compared for both the Indian summer monsoon(ISM)and western North Pacific summer monsoon(WNPSM)during 1958–2018.Covariability of the IIV and MEBR were identified for the two monsoons.When the MEBR was strong(weak),the IIV of the monsoon was observed to be large(small).This rule applied to both the ISM and WNPSM.Out-ofphase relationships were found between the ISM and the WNPSM.When the IIV and MEBR of the ISM were strong(weak),those of the WNPSM tended to be weak(strong).During the period with a stronger(weaker)ENSO–Atlantic coupling after(before)the mid-1980 s,the IIV and MEBR of the WNPSM(ISM)were observed to be stronger.The increasing influences from the tropical Atlantic sea surface temperature(SST)may trigger the observed seesaw pattern of the ISM and WNPSM in terms of the IIV and MEBR multidecadal variability.The results imply that tropical Atlantic SST may need to be given more attention and consideration when predicting future monsoon variability of the ISM and WNPSM.展开更多
This paper attempts to analyze in detail the remote influence of the Indian Ocean Basin warming on the Northwest Pacific (NWP) during the year of decaying E1 Nifio. Observation data and the Fast Ocean- Atmosphere co...This paper attempts to analyze in detail the remote influence of the Indian Ocean Basin warming on the Northwest Pacific (NWP) during the year of decaying E1 Nifio. Observation data and the Fast Ocean- Atmosphere coupled Model 1.5 were used to investigate the triggering conditions under which the remote influence is formed between the positive sea surface temperature (SST) anomaly in the North Indian Ocean and the Anomalous Northwest Pacific anticyclone (ANWPA). Our research show that it is only when there is a contributory background wind field over the Indian Ocean, i,e., when the Indian Summer Monsoon (ISM) reaches its peak, that the warmer SST anomaly in the North Indian Ocean incites significant easterly wind anomalies in the lower atmosphere of the Indo-West tropical Pacific. This then produces the remote influence on the ANWPA. Therefore, the SST anomaly in the North Indian Ocean might interfere with the prediction of the East Asia Summer Monsoon in the year of decaying E1 Nifio. Both the sustaining effect of local negative SST anomalies in the NWP, and the remote effect of positive SST anomalies in the North Indian Ocean on the ANWPA, should be considered in further research.展开更多
North China May precipitation(NCMP)accounts for a relatively small percentage of annual total precipitation in North China,but its climate variability is large and it has an important impact on the regional climate an...North China May precipitation(NCMP)accounts for a relatively small percentage of annual total precipitation in North China,but its climate variability is large and it has an important impact on the regional climate and agricultural production in North China.Based on observed and reanalysis data from 1979 to 2021,a significant relationship between NCMP and both the April Indian Ocean sea surface temperature(IOSST)and Northwest Pacific Dipole(NWPD)was found,indicating that there may be a link between them.This link,and the possible physical mechanisms by which the IOSST and NWPD in April affect NCMP anomalies,are discussed.Results show that positive(negative)IOSST and NWPD anomalies in April can enhance(weaken)the water vapor transport from the Indian Ocean and Northwest Pacific to North China by influencing the related atmospheric circulation,and thus enhance(weaken)the May precipitation in North China.Accordingly,an NCMP prediction model based on April IOSST and NWPD is established.The model can predict the annual NCMP anomalies effectively,indicating it has the potential to be applied in operational climate prediction.展开更多
Most of the aromatic rice cultivars are susceptible to disease, insect-pest attack and are more prone to lodging. Therefore, nitrogen is the key input for increasing the productivity of aromatic rice. Research analyzi...Most of the aromatic rice cultivars are susceptible to disease, insect-pest attack and are more prone to lodging. Therefore, nitrogen is the key input for increasing the productivity of aromatic rice. Research analyzing the effects of N level on yield and quality characteristics of modem aromatic cultivars in the north-western Indo-Gangetic Plains is not well documented. Therefore, the present study was conducted to optimise the N levels for higher yield and better quality of the modem aromatic rice cultivars. The mean grain yield increased by 22.5% when plots were supplemented with 40 kg/ha of N application as compared to control (unfertilized). Among cultivars, Punjab Mehak 1 registered highest yield (5.3 t/ha) followed by Pusa Basmati 1121 (4.78 t/ha) and Punjab Basmati 2 (4.66 t/ha) respectively. Interactive effect between N levels and cultivars on grain yield revealed that in Punjab Mehak l, grain yield responded significantly up to 60 kg/ha of N application as compared to Pusa Basmati 1121 and Punjab Basmati 2 where it responded only upto 40 kg/ha of N application. All the quality characteristic found to be improved with N application, whereas amylose content decreased with 60 kg/ha of N application as compared to 20 and 40 kg/ha of N application.展开更多
Using rainfall data from the Global Precipita- tion Climatology Project (GPCP), NOAA extended reconstruction sea surface temperature (ERSST), and NCEP/NCAR reanalysis, this study investigates the interannual varia...Using rainfall data from the Global Precipita- tion Climatology Project (GPCP), NOAA extended reconstruction sea surface temperature (ERSST), and NCEP/NCAR reanalysis, this study investigates the interannual variation of summer rainfall southwest of the Indian Peninsula and the northeastern Bay of Bengal associated with ENSO. The composite study indicates a decreased summer rainfall southwest of the Indian Penin- sula and an increase in the northeastern Bay of Bengal during the developing phase, but vice versa during the decay phase of E1 Nifio. Further regression analysis dem- onstrates that abnormal rainfall in the above two regions is controlled by different mechanisms. Southwest of the Indian Peninsula, the precipitation anomaly is related to local convection and water vapor flux in the decay phase of E1 Nifio. The anomalous cyclone circulation at the lower troposphere helps strengthen rainfall. In the northeastern Bay of Bengal, the anomalous rainfall depends on the strength of the Indian southwest summer monsoon (ISSM). A strong/weak ISSM in the developing/decay phase of E1 Nifio can bring more/less water vapor to strengthen/weaken the local summer precipitation.展开更多
Previous studies have shown that the Atlantic Multidecadal Oscillation (AMO) can play an important role in modulating the variabilityoflndian summer monsoon rainfall (ISMR) over a 50-60-yr timescale. A significant...Previous studies have shown that the Atlantic Multidecadal Oscillation (AMO) can play an important role in modulating the variabilityoflndian summer monsoon rainfall (ISMR) over a 50-60-yr timescale. A significant positive correlation between the AMO and ISMR is found both in observations and models. However, instrumental records show that the relationship becomes non-significant or even of opposite sign after the mid-1990s, suggesting a weakening of the AMO-ISMR connection. The mechanism for the breakdown of the AMO-ISMR connection is investigated in the present work, and the results suggest that a substantial warming in the Indian-tropical western Pacific Ocean plays a role. The warming weakens the meridional gradient of tropospheric temperature between Eurasia and the indian Ocean, and reduces the meridional sea level pressure gradient between the Indian Subcontinent and Indian Ocean, weakening the Indian summer monsoon. Thus, warming in the Indian-tropical western Pacific Ocean seems responsible for the weakened connection between the AMO and ISM.展开更多
The Himalaya harbor rich floristic diversity which is of immense scientific interest and socio-economic importance.In this study, floristic diversity of a remote alpine valley has been studied based on information ext...The Himalaya harbor rich floristic diversity which is of immense scientific interest and socio-economic importance.In this study, floristic diversity of a remote alpine valley has been studied based on information extracted from remotely sensed satellite data along with field surveys undertaken during 2008-2014.Analysis of vegetation information from satellite data revealed that ~75% of the area is covered with natural vegetation which comprises lush green coniferous forests, alpine pastures and alpine scrub lands.With inputs from vegetation information extracted from satellite data, comprehensive field surveys were planned to document the floristic diversity of the region.Analysis of species composition showed a total of 285 plant species,belonging to 191 genera in 60 families.Of these, 250 species are herbs, 14 shrubs, 2 sub-shrubs and 19 trees.The dicotyledons are represented by 240 species, monocotyledons 30, gymnosperms 04, andpteriodophytes 11 species.Asteraceae is the largest family with 35 species.During the present study, 5species(Corydalis cashmeriana, Hippophae rhamnoides, Primula minutissima, Saussurea sacra and Inula orientalis) have been recorded for the first time from this Himalayan region.The study demonstrates the benefits of geo-informatics in floristic studies, particularly the robustness of remotely sensed data in identifying areas with potentially high species richness, which would be otherwise difficult in a complex mountainous terrain using traditional floristic surveys alone.The present study is expected to provide baseline scientific data for cutting edge studies relating to long term ecological research, bioprospecting, possible impacts of changing climate on vegetation and sustainable use of plant resources in this Himalayan region.展开更多
Recent studies have found a connection between Indian Ocean Basin Warming and the anomalous Northwest Pacific Anticy- clone (ANPWA) during El Nifio decaying year. This study focuses on the necessary condition for th...Recent studies have found a connection between Indian Ocean Basin Warming and the anomalous Northwest Pacific Anticy- clone (ANPWA) during El Nifio decaying year. This study focuses on the necessary condition for this connection by using ob- servation and numerical simulation. The seasonal transition of the Indian Ocean sea surface wind is critical to the climatic ef- fect of Indian Ocean Basin Warming. When the South Asian Summer Monsoon reaches its peak, the background wind be- comes desirable for basin warming, which then affects the climate in the Northwest Pacific. Via the Kelvin waves and Ekman divergence, the wind anomalies exist in the lower atmosphere east of the Indian Ocean warm Sea Surface Temperature (SST) anomalies, and intensify and sustain the ANWPA throughout the E1 Nifio decaying summer. This impact plays an important role in the inter-annual variability of the East Asian Summer Monsoon.展开更多
文摘The developmental activities, particularly the construction of hydroelectric projects are causing a great loss of biodiversity in the Indian Himalayan Region. The Himaehal Pradesh, a part of IHR is well known for the development of hydroelectric projects. The Parbati H.E. Project is amongst the major projects of the State. The different stages of the project are all causing loss of biodiversity of the area. Stage Ⅲ of the Parbati H.E. Project is a run of the river scheme on the Sainj River downstream of Power House of Parbati H.E. Project Stage Ⅱ. The project shall utilize regulated discharge of Parbati H.E. Project Stage Ⅱ and inflow of River Sainj for power generation, and has been contemplated as a peaking station operating in tandem with Stage Ⅱ. The present study has been undertaken to see the impact of hydroelectric project on the biodiversity, particularly on medicinal plants. A total of 104 species of medicinal plants, belonging to different life forms, i.e., trees (23 spp.), shrubs (22 spp.), herbs (57 spp.) and ferns (2 spp.) were recorded. The species have been analyzed and studied for their distribution, classification, altitudinal zones, part (s) used, indigenous uses, nativity, endemism and rarity.Different parts of these species, such as whole plants, roots (including rhizomes and tubers), leaves, flowers, fruits, seeds, stems, barks, spikes, nuts and insect galls are used by the inhabitants for curing various diseases and ailments. 3o species are native to the Himalayan region, 9 species native to the Himalayan region and adjacent countries also and 65 species are non-natives. 9 species are near endemics. Considering the whole Himalaya as a biogeographie unit (sensu lato), the near endemics are endemic to the Himalaya. Among these species, Zanthoxylum armature is categorized as Endangered and Valeriana wallichii as Vulnerable. Hedychium spicatum, Rhus javanica, Berberis lycium, Thalictrum foliolossum, Salvia lanata, Rubia cordifolia and Bergenia ligulata may be considered as threatened species due to their over exploitation for trade. 90 species are propagated by seeds, 8 species by seeds and rhizomes/roots/tubers, 4 species by seeds and cuttings, and 2 species by sori. A management plan for the cultivation and conservation of the medicinal plants in the dam submergence area, and the commercially viable medicinal plants with high value in the catchment area is suggested.
文摘The finfish and shellfish resources were assessed quantitatively and qualitatively in regard to their abundance in creek waters at three sites within a period of two years, fi'om January 1999 to December 2000, in the western mangrove areas of Kachchh. The catch rate varied from 0.69 to 6.99kg·h^-1. It was low during monsoon (July to October), which could be due to the freshwater-flow-induced salinity reduction in all the sites. Among 38 species recorded, 5 were shellfish and 33 were finfish. The spawning period of fishes was found to be during summer and early monsoon period (May to August). Surface water temperatures varied from 17℃ to 37 ℃. Salinity values varied from 34 to 44 and the pH ranged between 7 and 8.9. Variation in dissolved oxygen content was from 3.42 to 5.85 mL L^-1. The high fishery densities in these semi arid mangrove creek areas were recorded during monsoon and early winter season.
基金jointly supported by the National Basic Research Program of China[grant numbers 2014CB953902 and2015CB453202]the Strategic Leading Science Projects of the Chinese Academy of Sciences[grant number XDAl 1010402]the National Natural Science Foundation of China[grant numbers 41305065,41305068,and 91337216]
文摘This study investigates the local air-sea relationship associated with the two dominant intraseasonal oscillation(ISO) components during the spring-to-summer transition and compares their properties using multiple air-sea variables in the period 1998-2013.The amplitude of percentage variance in SST in periods of 10-20 and 30-60 days are comparable,but the locations of the maxima differ.A strong percentage variance in the 10-20-day SST is evident in the equatorial western Pacific,whereas for the 30-60-day SST the strongest ratio occurs in the North Indian Ocean(NIO),South China Sea(SCS),and North Pacific.Over the NIO,SCS,and Philippine Sea,there are significant correlations between SST and precipitation for both 10-20-day and 30-60-day ISOs.In contrast,the correlations between SST and surface heat fluxes cover a broader region and have larger coefficients.Thus,the atmospheric variables and surface heat fluxes show larger variations within the higher frequency band.However,the amplitude of the correlation coefficients between SST and surface heat fluxes,and SST and rainfall,is greater in the lower frequency band.The corresponding time lags for the different variables reveal that a strong local air-sea interaction is indicated over the NIO,SCS,and western North Pacific,from April to June in both timescales;however,the strength of the air-sea relationship depends on the region and variable.
基金supported by the Chinese Academy of Sciences (Grant No. KZCX2-YW-220)the National Basic Research Program of China (Grant No. 2006CB403601)the National Natural Science Foundation of China (Grant No. 40725016)
文摘A zonal teleconnection has been found along the Asian jet over the Eurasian continent during summer. In this study, the authors investigated circulation anomalies in the extratropics, in particular for the zonal teleconnection, under different combinations of subtropical convection anomalies over the northern Indian continent (IND) and the westem North Pacific (WNP). The outof-phase configuration (i.e., stronger (weaker) IND convection and weaker (stronger) WNP convection) was found to be more common than the in-phase configuration (i.e., stronger (weaker) IND convection and stronger (weaker) WNP convection), which is consistent with previous results. Composite results indicated that circulation anomalies for out-of-phase configurations of 30-60-day convection oscillations are much stronger in the middle latitudes than those for in-phase configurations. In addition, zonal teleconnection patterns are predominant for the out-of-phase configurations, particularly for the configuration of strong IND convection and weak WNP convec- tion; however, they are either weak or obscure for the in-phase configurations. These results suggest that the zonal teleconnection pattem along the Asian jet is dependent on different combinations of the 1ND and WNP subtropical convection anomalies.
基金supported by the National Natural Science Foundation of China grant number 41776031the National Key Research and Development Program of China grant number 2018YFC1506903+2 种基金the Guangdong Natural Science Foundation grant number 2015A030313796the program for scientific research start-up funds of Guangdong Ocean Universitythe Foundation for Returned Scholars of the Ministry of Education of China。
文摘The intensity of interannual variability(IIV)of the monsoon and monsoon–ENSO biennial relationship(MEBR)were examined and compared for both the Indian summer monsoon(ISM)and western North Pacific summer monsoon(WNPSM)during 1958–2018.Covariability of the IIV and MEBR were identified for the two monsoons.When the MEBR was strong(weak),the IIV of the monsoon was observed to be large(small).This rule applied to both the ISM and WNPSM.Out-ofphase relationships were found between the ISM and the WNPSM.When the IIV and MEBR of the ISM were strong(weak),those of the WNPSM tended to be weak(strong).During the period with a stronger(weaker)ENSO–Atlantic coupling after(before)the mid-1980 s,the IIV and MEBR of the WNPSM(ISM)were observed to be stronger.The increasing influences from the tropical Atlantic sea surface temperature(SST)may trigger the observed seesaw pattern of the ISM and WNPSM in terms of the IIV and MEBR multidecadal variability.The results imply that tropical Atlantic SST may need to be given more attention and consideration when predicting future monsoon variability of the ISM and WNPSM.
基金Supported by the National Basic Research Program of China(973 Program)(Nos.2010CB428504,2012CB956002)the National Natural Science Foundation of China(Nos.40906005,41105059,41065005,GYHY201106017,GYHY201306027)the National Key Technology Research and Development Program(No.2009BAC51B01)
文摘This paper attempts to analyze in detail the remote influence of the Indian Ocean Basin warming on the Northwest Pacific (NWP) during the year of decaying E1 Nifio. Observation data and the Fast Ocean- Atmosphere coupled Model 1.5 were used to investigate the triggering conditions under which the remote influence is formed between the positive sea surface temperature (SST) anomaly in the North Indian Ocean and the Anomalous Northwest Pacific anticyclone (ANWPA). Our research show that it is only when there is a contributory background wind field over the Indian Ocean, i,e., when the Indian Summer Monsoon (ISM) reaches its peak, that the warmer SST anomaly in the North Indian Ocean incites significant easterly wind anomalies in the lower atmosphere of the Indo-West tropical Pacific. This then produces the remote influence on the ANWPA. Therefore, the SST anomaly in the North Indian Ocean might interfere with the prediction of the East Asia Summer Monsoon in the year of decaying E1 Nifio. Both the sustaining effect of local negative SST anomalies in the NWP, and the remote effect of positive SST anomalies in the North Indian Ocean on the ANWPA, should be considered in further research.
基金This work was supported by the National Natural Science Foundation of China[grant number 41975088].
文摘North China May precipitation(NCMP)accounts for a relatively small percentage of annual total precipitation in North China,but its climate variability is large and it has an important impact on the regional climate and agricultural production in North China.Based on observed and reanalysis data from 1979 to 2021,a significant relationship between NCMP and both the April Indian Ocean sea surface temperature(IOSST)and Northwest Pacific Dipole(NWPD)was found,indicating that there may be a link between them.This link,and the possible physical mechanisms by which the IOSST and NWPD in April affect NCMP anomalies,are discussed.Results show that positive(negative)IOSST and NWPD anomalies in April can enhance(weaken)the water vapor transport from the Indian Ocean and Northwest Pacific to North China by influencing the related atmospheric circulation,and thus enhance(weaken)the May precipitation in North China.Accordingly,an NCMP prediction model based on April IOSST and NWPD is established.The model can predict the annual NCMP anomalies effectively,indicating it has the potential to be applied in operational climate prediction.
文摘Most of the aromatic rice cultivars are susceptible to disease, insect-pest attack and are more prone to lodging. Therefore, nitrogen is the key input for increasing the productivity of aromatic rice. Research analyzing the effects of N level on yield and quality characteristics of modem aromatic cultivars in the north-western Indo-Gangetic Plains is not well documented. Therefore, the present study was conducted to optimise the N levels for higher yield and better quality of the modem aromatic rice cultivars. The mean grain yield increased by 22.5% when plots were supplemented with 40 kg/ha of N application as compared to control (unfertilized). Among cultivars, Punjab Mehak 1 registered highest yield (5.3 t/ha) followed by Pusa Basmati 1121 (4.78 t/ha) and Punjab Basmati 2 (4.66 t/ha) respectively. Interactive effect between N levels and cultivars on grain yield revealed that in Punjab Mehak l, grain yield responded significantly up to 60 kg/ha of N application as compared to Pusa Basmati 1121 and Punjab Basmati 2 where it responded only upto 40 kg/ha of N application. All the quality characteristic found to be improved with N application, whereas amylose content decreased with 60 kg/ha of N application as compared to 20 and 40 kg/ha of N application.
基金supported by the National Basic Research Program of China(973 Program,2010CB950302&2012 CB955603)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.XDA05090404)the National Natural Science Foundation of China(41149908)
文摘Using rainfall data from the Global Precipita- tion Climatology Project (GPCP), NOAA extended reconstruction sea surface temperature (ERSST), and NCEP/NCAR reanalysis, this study investigates the interannual variation of summer rainfall southwest of the Indian Peninsula and the northeastern Bay of Bengal associated with ENSO. The composite study indicates a decreased summer rainfall southwest of the Indian Penin- sula and an increase in the northeastern Bay of Bengal during the developing phase, but vice versa during the decay phase of E1 Nifio. Further regression analysis dem- onstrates that abnormal rainfall in the above two regions is controlled by different mechanisms. Southwest of the Indian Peninsula, the precipitation anomaly is related to local convection and water vapor flux in the decay phase of E1 Nifio. The anomalous cyclone circulation at the lower troposphere helps strengthen rainfall. In the northeastern Bay of Bengal, the anomalous rainfall depends on the strength of the Indian southwest summer monsoon (ISSM). A strong/weak ISSM in the developing/decay phase of E1 Nifio can bring more/less water vapor to strengthen/weaken the local summer precipitation.
基金supported by the National Key Research and Development Program of China[grant number 2016YFA0601802]the National Natural Science Foundation of China[grant number41375085],[grant number 421004]the Strategic Project of the Chinese Academy of Sciences[grant number XDA11010401]
文摘Previous studies have shown that the Atlantic Multidecadal Oscillation (AMO) can play an important role in modulating the variabilityoflndian summer monsoon rainfall (ISMR) over a 50-60-yr timescale. A significant positive correlation between the AMO and ISMR is found both in observations and models. However, instrumental records show that the relationship becomes non-significant or even of opposite sign after the mid-1990s, suggesting a weakening of the AMO-ISMR connection. The mechanism for the breakdown of the AMO-ISMR connection is investigated in the present work, and the results suggest that a substantial warming in the Indian-tropical western Pacific Ocean plays a role. The warming weakens the meridional gradient of tropospheric temperature between Eurasia and the indian Ocean, and reduces the meridional sea level pressure gradient between the Indian Subcontinent and Indian Ocean, weakening the Indian summer monsoon. Thus, warming in the Indian-tropical western Pacific Ocean seems responsible for the weakened connection between the AMO and ISM.
文摘The Himalaya harbor rich floristic diversity which is of immense scientific interest and socio-economic importance.In this study, floristic diversity of a remote alpine valley has been studied based on information extracted from remotely sensed satellite data along with field surveys undertaken during 2008-2014.Analysis of vegetation information from satellite data revealed that ~75% of the area is covered with natural vegetation which comprises lush green coniferous forests, alpine pastures and alpine scrub lands.With inputs from vegetation information extracted from satellite data, comprehensive field surveys were planned to document the floristic diversity of the region.Analysis of species composition showed a total of 285 plant species,belonging to 191 genera in 60 families.Of these, 250 species are herbs, 14 shrubs, 2 sub-shrubs and 19 trees.The dicotyledons are represented by 240 species, monocotyledons 30, gymnosperms 04, andpteriodophytes 11 species.Asteraceae is the largest family with 35 species.During the present study, 5species(Corydalis cashmeriana, Hippophae rhamnoides, Primula minutissima, Saussurea sacra and Inula orientalis) have been recorded for the first time from this Himalayan region.The study demonstrates the benefits of geo-informatics in floristic studies, particularly the robustness of remotely sensed data in identifying areas with potentially high species richness, which would be otherwise difficult in a complex mountainous terrain using traditional floristic surveys alone.The present study is expected to provide baseline scientific data for cutting edge studies relating to long term ecological research, bioprospecting, possible impacts of changing climate on vegetation and sustainable use of plant resources in this Himalayan region.
基金supported by the National Key Program for Developing Basic Science(Grant Nos.2010CB428504&2012CB956002)National Natural Science Foundation of China(Grant Nos.40906005,41105059,41275069,GYHY201106017&GYHY201206038)the National Key Technologies R&D Program of China(Grant No.2009BAC51B01)
文摘Recent studies have found a connection between Indian Ocean Basin Warming and the anomalous Northwest Pacific Anticy- clone (ANPWA) during El Nifio decaying year. This study focuses on the necessary condition for this connection by using ob- servation and numerical simulation. The seasonal transition of the Indian Ocean sea surface wind is critical to the climatic ef- fect of Indian Ocean Basin Warming. When the South Asian Summer Monsoon reaches its peak, the background wind be- comes desirable for basin warming, which then affects the climate in the Northwest Pacific. Via the Kelvin waves and Ekman divergence, the wind anomalies exist in the lower atmosphere east of the Indian Ocean warm Sea Surface Temperature (SST) anomalies, and intensify and sustain the ANWPA throughout the E1 Nifio decaying summer. This impact plays an important role in the inter-annual variability of the East Asian Summer Monsoon.