利用格点化降水观测数据集(CN05.1)以及ECMWF再分析资料(ERA5),分析1961—2020年夏季西南地区东部(Eastern Southwest China,ESWC)的降水、水汽含量及降水转化率特征,并利用天气学分析方法初步探究地形分布对降水转化率空间分布差异的影...利用格点化降水观测数据集(CN05.1)以及ECMWF再分析资料(ERA5),分析1961—2020年夏季西南地区东部(Eastern Southwest China,ESWC)的降水、水汽含量及降水转化率特征,并利用天气学分析方法初步探究地形分布对降水转化率空间分布差异的影响,最后利用中尺度数值模式WRF4.0(Weather Research and Forecasting Model)设计地形敏感性试验验证地形对西南地区东部夏季降水的作用。结果表明:(1)1961—2020年夏季西南地区东部的降水呈现东多西少的分布特征,但水汽含量却在其东南部和西北部存在两个大值区,水汽大值区降水转化率偏低,强降水区与水汽含量大值区分布存在明显差异,通过分析强降水区与水平风场及垂直速度场的形势配合发现地形是导致此差异的重要因素。(2)WRF模式能较好地模拟出西南地区东部夏季降水的空间分布特征,通过地形敏感性试验发现,区域内大娄山、方斗山及大巴山组成的西南-东北向山地地形分布对降水强度有显著影响,地形高度的降低将导致区域东南部降水量显著减少。(3)敏感性试验中将区域地形高度分别降低一半和去除地形后,区域东南部的降水在月时间尺度中将分别减少9.89%和19.90%。地形高度的改变也会引起区域垂直速度、水平风场、水汽输送及水汽辐合量发生改变,当地形高度降低后,上升运动及西南风明显减弱,水汽输送强度降低,水汽辐合量减少,不利于降水形成。展开更多
文摘利用格点化降水观测数据集(CN05.1)以及ECMWF再分析资料(ERA5),分析1961—2020年夏季西南地区东部(Eastern Southwest China,ESWC)的降水、水汽含量及降水转化率特征,并利用天气学分析方法初步探究地形分布对降水转化率空间分布差异的影响,最后利用中尺度数值模式WRF4.0(Weather Research and Forecasting Model)设计地形敏感性试验验证地形对西南地区东部夏季降水的作用。结果表明:(1)1961—2020年夏季西南地区东部的降水呈现东多西少的分布特征,但水汽含量却在其东南部和西北部存在两个大值区,水汽大值区降水转化率偏低,强降水区与水汽含量大值区分布存在明显差异,通过分析强降水区与水平风场及垂直速度场的形势配合发现地形是导致此差异的重要因素。(2)WRF模式能较好地模拟出西南地区东部夏季降水的空间分布特征,通过地形敏感性试验发现,区域内大娄山、方斗山及大巴山组成的西南-东北向山地地形分布对降水强度有显著影响,地形高度的降低将导致区域东南部降水量显著减少。(3)敏感性试验中将区域地形高度分别降低一半和去除地形后,区域东南部的降水在月时间尺度中将分别减少9.89%和19.90%。地形高度的改变也会引起区域垂直速度、水平风场、水汽输送及水汽辐合量发生改变,当地形高度降低后,上升运动及西南风明显减弱,水汽输送强度降低,水汽辐合量减少,不利于降水形成。