[Objective] This paper aimed to explore the formulation mechanism of one heavy precipitation synoptic process in the south-west of Shandong Province from June 16th to June 17th in 2010. [Method] Based on information o...[Objective] This paper aimed to explore the formulation mechanism of one heavy precipitation synoptic process in the south-west of Shandong Province from June 16th to June 17th in 2010. [Method] Based on information of circulation forms and physical quantity field, data of radar echo evolution and numerical prediction test, a heavy precipitation synoptic process in southwest Shandong during June 16th to June 17th in 2010 was analyzed to explore the formation mechanism of this synoptic process. [Result] The results showed that under the condition of relatively large circulation radial degree in eastern China, high-altitude cold vortex in Mongolia split, moved towards the south and impacted southwest air current at the edge of subtropical high from the west side. Cold vortex and shear line at the edge of subtropical high were the major impact system for the formulation of heavy precipitation synoptic process. The transportation of the southwest jest stream to the warm moist airflow provided water vapor conditions for the heavy precipitation, the high and low level jet stream and low level shear line provided strong dynamic lifting for this precipitation. [Conclusion] This study provided reference for heavy precipitation forecast.展开更多
This paper investigates the variability of the summer (May-September) South Asian Iligh (SAIl) for the period 1979-2012. Results show that the intensity and the area of the summer SAH decreased around 2002 at the ...This paper investigates the variability of the summer (May-September) South Asian Iligh (SAIl) for the period 1979-2012. Results show that the intensity and the area of the summer SAH decreased around 2002 at the decadal scale; and the East Asian westerly jet suppressed at the north edge of the SAH, which is consistent with the SAH variation. The precipitation pattern over eastern China also shifted during the same periods, with increased rainfall in the Huang-Huai River region and South China and decreased rainfall in the Yangtze River region. The relationship between the two variations is evidently strengthened via changes in moisture flux.展开更多
文摘[Objective] This paper aimed to explore the formulation mechanism of one heavy precipitation synoptic process in the south-west of Shandong Province from June 16th to June 17th in 2010. [Method] Based on information of circulation forms and physical quantity field, data of radar echo evolution and numerical prediction test, a heavy precipitation synoptic process in southwest Shandong during June 16th to June 17th in 2010 was analyzed to explore the formation mechanism of this synoptic process. [Result] The results showed that under the condition of relatively large circulation radial degree in eastern China, high-altitude cold vortex in Mongolia split, moved towards the south and impacted southwest air current at the edge of subtropical high from the west side. Cold vortex and shear line at the edge of subtropical high were the major impact system for the formulation of heavy precipitation synoptic process. The transportation of the southwest jest stream to the warm moist airflow provided water vapor conditions for the heavy precipitation, the high and low level jet stream and low level shear line provided strong dynamic lifting for this precipitation. [Conclusion] This study provided reference for heavy precipitation forecast.
基金supported by the National Natural Science Foundation of China (Grants Nos. 41210007 and 41130103)
文摘This paper investigates the variability of the summer (May-September) South Asian Iligh (SAIl) for the period 1979-2012. Results show that the intensity and the area of the summer SAH decreased around 2002 at the decadal scale; and the East Asian westerly jet suppressed at the north edge of the SAH, which is consistent with the SAH variation. The precipitation pattern over eastern China also shifted during the same periods, with increased rainfall in the Huang-Huai River region and South China and decreased rainfall in the Yangtze River region. The relationship between the two variations is evidently strengthened via changes in moisture flux.