Total concentrations of arsenic, lead, cadmium, mercury, nickel, chromium, and copper in the soils from near a coal mine area in southwest Guizhou, China, were measured to evaluate the level of contamination, and the ...Total concentrations of arsenic, lead, cadmium, mercury, nickel, chromium, and copper in the soils from near a coal mine area in southwest Guizhou, China, were measured to evaluate the level of contamination, and the potential ecological risks posed by the heavy metals were quantitatively estimated. Results reveal that all heavy metals/metalloid exceeded the background values for soil environmental quality of heavy metals in Guizhou area. Geo-accumulation index(I_(geo)) showed that arsenic had the highest contamination level(I_(geo)=4) among the seven heavy metals/metalloid, and the contamination levels of mercury and lead were also relatively high(I_(geo)=3). Pearson correlation and cluster analysis identified that mercury, copper and arsenic had a relationship, and their presence might be mainly related to mining activity, coal and oil combustion, and vehicle emissions. Improved Nemerow index indicated that the overall level of heavy metal contamination in the studied area ranged from moderately–heavily contaminated to heavily contaminated level. Potential ecological risk index(R_I) analysis manifested that the whole ecological risk level ranged from high degree to very high degree(325.30≤R_I≤801.02) in the studied soil samples, and the potential ecological risk factors (E_r^i) of heavy metals/metalloid were as follows: Hg > As > Cd > Pb > Cu > Ni > Cr, and the E_r^i of Hg and As reached very high risk grade.展开更多
The concentration, distribution, and occurrence of rare earth elements (REEs) in coals as well as stone coalsin different geological periods from Chongqing were studied. The results show that the REE content in coals ...The concentration, distribution, and occurrence of rare earth elements (REEs) in coals as well as stone coalsin different geological periods from Chongqing were studied. The results show that the REE content in coals fromChongqing is much higher than that of the ordinary Chinese coals, the Late Paleozoic coals from North China, UScoals, and the world coals. Although the concentration of light rare earth elements (LREE) is higher than that of heavyrare earth elements (HREE), the ratio of LREE to HREE is as low as 5.11. The REE content decreases with thecoal-formation periods from old to new. The REE content in the Sinian stone coal is the highest, but it is the lowest inEarly Jurassic coals. The similar REE contents in bituminous coals and anthracite show that the metamorphism has alittle influence on REE content in coal. In addition, silicate association dominates the occurrence mode of REEs incoals from Chongqing.展开更多
基金Project(21467005)supported by the National Natural Science Foundation of China
文摘Total concentrations of arsenic, lead, cadmium, mercury, nickel, chromium, and copper in the soils from near a coal mine area in southwest Guizhou, China, were measured to evaluate the level of contamination, and the potential ecological risks posed by the heavy metals were quantitatively estimated. Results reveal that all heavy metals/metalloid exceeded the background values for soil environmental quality of heavy metals in Guizhou area. Geo-accumulation index(I_(geo)) showed that arsenic had the highest contamination level(I_(geo)=4) among the seven heavy metals/metalloid, and the contamination levels of mercury and lead were also relatively high(I_(geo)=3). Pearson correlation and cluster analysis identified that mercury, copper and arsenic had a relationship, and their presence might be mainly related to mining activity, coal and oil combustion, and vehicle emissions. Improved Nemerow index indicated that the overall level of heavy metal contamination in the studied area ranged from moderately–heavily contaminated to heavily contaminated level. Potential ecological risk index(R_I) analysis manifested that the whole ecological risk level ranged from high degree to very high degree(325.30≤R_I≤801.02) in the studied soil samples, and the potential ecological risk factors (E_r^i) of heavy metals/metalloid were as follows: Hg > As > Cd > Pb > Cu > Ni > Cr, and the E_r^i of Hg and As reached very high risk grade.
文摘The concentration, distribution, and occurrence of rare earth elements (REEs) in coals as well as stone coalsin different geological periods from Chongqing were studied. The results show that the REE content in coals fromChongqing is much higher than that of the ordinary Chinese coals, the Late Paleozoic coals from North China, UScoals, and the world coals. Although the concentration of light rare earth elements (LREE) is higher than that of heavyrare earth elements (HREE), the ratio of LREE to HREE is as low as 5.11. The REE content decreases with thecoal-formation periods from old to new. The REE content in the Sinian stone coal is the highest, but it is the lowest inEarly Jurassic coals. The similar REE contents in bituminous coals and anthracite show that the metamorphism has alittle influence on REE content in coal. In addition, silicate association dominates the occurrence mode of REEs incoals from Chongqing.