New terrestrial habitats have emerged and a primary succession has developed in the retreat area (29°34'N, 102°oo'E, 2951-2886 m) after the retreat of the Hailuogou glacier. To investigate soil microbial...New terrestrial habitats have emerged and a primary succession has developed in the retreat area (29°34'N, 102°oo'E, 2951-2886 m) after the retreat of the Hailuogou glacier. To investigate soil microbial changes along the primary successional chronosequence, mixed soil samples were collected at six sites at different ages (2 young sites, 2 mid-aged sites, and 2 old sites). The RNA was extracted and amplified. Bacterial 16S rRNA and fungal 18S rRNA were analyzed using high-throughput 454 pyrosequencing analysis. Overall, pyrosequeneing showed that Proteobacteria, Acidobacteria, Baeteroidetes and Actinobacteria were the main bacterial phyla, and the fungal communities were strongly dominated by the phyla Ascomyeota and Basidiomyeota in the retreat area. The Shannon diversity index (Hshannon) of bacteria was 6.5 - 7.9, and that of fungi was 2.2 - 4.1 in these sites. For the bacterial communities, diversity and evenness values were highest on the mid-age sites and were relatively low on the young trend was observed for the and old sites. A similar fungal communities. In contrast, soil properties showed significant linear distributional trends (increase or decrease) with the age of the site. Combining the linear change patterns of soil properties, the highest values of bacterial and fungal evenness and diversity in the mid-aged sites indicated that there was less environmental stress and more niches for microbial communities in the middle successional stage compare with other stages. In addition, our analysis showed that microbial communities were the main drivers that build a soil organic matter pool to expedite pedogenesis for ecosystem succession. This primary succession in the Hailuogou glacier retreat area is developing rapidly compared with that in other glacier retreats.展开更多
The primary productivity of terrestrial ecosystems is influenced by soil phosphorus bioavailability, which depends largely on chemical fractions of phosphorus. The sequential fractionation technique developed by Hedle...The primary productivity of terrestrial ecosystems is influenced by soil phosphorus bioavailability, which depends largely on chemical fractions of phosphorus. The sequential fractionation technique developed by Hedley et al. or its subsequent modification is a well-known method to determine soil phosphorus forms. Hedley sequential fractionation technique separates the phosphorus into fractions based on their different chemical solubilities in extractants with certain chemical properties. Recently, synchrotron-based X-ray absorption near edge structure(XANES) spectroscopy has been employed to measure soil phosphorus species directly and non-invasively. The XANES method provides information concerning local structure and chemical information of target elements at a molecular level. Thus, it can distinguish phosphorus fractions bound by metal oxides or hydroxides(such as Fe, Al, and Ca). In this present work, the phosphorus speciation of topsoil along a glacial foreland chronosequence in Gongga Mountain is determined using these two methods. The changes in soil phosphorus bioavailability along the 120-year-old chronosequence are assessed based on comparisons of the results obtained by these two methods. The results indicate that Hedley sequential fractionation technique shows a greater ability to determine soil bioavailable phosphorus(Resin-P and NaCHO3-P), while XANES is effective in distinguishing phosphorus bound by metal compounds. In the chronosequence, Ca- and Al-bound phosphorus were derived mainly from primary minerals, whose phosphorus contents decreased within 120 years of moraine weathering and soil development. The content of soil bioavailable phosphorus increased rapidly after 30 years since deglaciation. The increasing phosphorus bioavailability promoted the colonizing and primary succession vegetation.展开更多
基金funded by the National Natural Science Foundation of China(Grant Nos.41501281 and 41272200)the Chinese Academy of Sciences(CAS "Light of West China" Program)
文摘New terrestrial habitats have emerged and a primary succession has developed in the retreat area (29°34'N, 102°oo'E, 2951-2886 m) after the retreat of the Hailuogou glacier. To investigate soil microbial changes along the primary successional chronosequence, mixed soil samples were collected at six sites at different ages (2 young sites, 2 mid-aged sites, and 2 old sites). The RNA was extracted and amplified. Bacterial 16S rRNA and fungal 18S rRNA were analyzed using high-throughput 454 pyrosequencing analysis. Overall, pyrosequeneing showed that Proteobacteria, Acidobacteria, Baeteroidetes and Actinobacteria were the main bacterial phyla, and the fungal communities were strongly dominated by the phyla Ascomyeota and Basidiomyeota in the retreat area. The Shannon diversity index (Hshannon) of bacteria was 6.5 - 7.9, and that of fungi was 2.2 - 4.1 in these sites. For the bacterial communities, diversity and evenness values were highest on the mid-age sites and were relatively low on the young trend was observed for the and old sites. A similar fungal communities. In contrast, soil properties showed significant linear distributional trends (increase or decrease) with the age of the site. Combining the linear change patterns of soil properties, the highest values of bacterial and fungal evenness and diversity in the mid-aged sites indicated that there was less environmental stress and more niches for microbial communities in the middle successional stage compare with other stages. In addition, our analysis showed that microbial communities were the main drivers that build a soil organic matter pool to expedite pedogenesis for ecosystem succession. This primary succession in the Hailuogou glacier retreat area is developing rapidly compared with that in other glacier retreats.
基金supported by the National Natural Science Foundation of China(Grant No.41272220)the Chinese Academy of Sciences(Grant Nos.KZCX2-YW-BR-21 and KZZD-EW-TZ-06)
文摘The primary productivity of terrestrial ecosystems is influenced by soil phosphorus bioavailability, which depends largely on chemical fractions of phosphorus. The sequential fractionation technique developed by Hedley et al. or its subsequent modification is a well-known method to determine soil phosphorus forms. Hedley sequential fractionation technique separates the phosphorus into fractions based on their different chemical solubilities in extractants with certain chemical properties. Recently, synchrotron-based X-ray absorption near edge structure(XANES) spectroscopy has been employed to measure soil phosphorus species directly and non-invasively. The XANES method provides information concerning local structure and chemical information of target elements at a molecular level. Thus, it can distinguish phosphorus fractions bound by metal oxides or hydroxides(such as Fe, Al, and Ca). In this present work, the phosphorus speciation of topsoil along a glacial foreland chronosequence in Gongga Mountain is determined using these two methods. The changes in soil phosphorus bioavailability along the 120-year-old chronosequence are assessed based on comparisons of the results obtained by these two methods. The results indicate that Hedley sequential fractionation technique shows a greater ability to determine soil bioavailable phosphorus(Resin-P and NaCHO3-P), while XANES is effective in distinguishing phosphorus bound by metal compounds. In the chronosequence, Ca- and Al-bound phosphorus were derived mainly from primary minerals, whose phosphorus contents decreased within 120 years of moraine weathering and soil development. The content of soil bioavailable phosphorus increased rapidly after 30 years since deglaciation. The increasing phosphorus bioavailability promoted the colonizing and primary succession vegetation.