In the summer of 2013, an unprecedented heat wave was experienced over a vast area of southern China. The great areal extent, duration, and strength of this high temperature are very rare. For the 2013 hot spell, the ...In the summer of 2013, an unprecedented heat wave was experienced over a vast area of southern China. The great areal extent, duration, and strength of this high temperature are very rare. For the 2013 hot spell, the major and direct influence mostly came from the anomaly of the western Pacific subtropical high(WPSH). The abnormally strong and stable WPSH was associated with specific surrounding circulations. The eastward extension of a stronger Qinghai-Xizang high favored the westward extension of the WPSH. The weaker cold air activity from the polar region led to the northward shift of the WPSH and helped it to remain stable. In the tropics, the western segment of the ITCZ was abnormally strong in the period, and supported the maintenance of the WPSH from the south. In addition, the interdecadal variation of the WPSH provided a decadal background for the anomaly variation of the WPSH that summer.展开更多
This study investigated the connection between the Australian summer monsoon(ASM) and summer precipitation over central China. It was found that,following a weaker-than-normal ASM, the East Asian summer monsoon and we...This study investigated the connection between the Australian summer monsoon(ASM) and summer precipitation over central China. It was found that,following a weaker-than-normal ASM, the East Asian summer monsoon and western North Pacific subtropical high tend to be stronger, yielding anomalous northward moisture to be transported from the western Pacific to central China. Besides, anomalous upwelling motion emerges over 30–37.5°N, along 110°E. Consequently,significant positive summer precipitation anomalies are located over central China. Further analysis indicated that the boreal winter sea surface temperature(SST) in the Indian Ocean and South China Sea shows positive anomalies in association with a weaker-than-normal ASM. The Indian Ocean warming in boreal winter could persist into the following summer because of its own long memory, emanating a baroclinic Kelvin wave into the Pacific that triggers suppressed convection and an anomalous anticyclone. Besides, the abnormal SST signal in the South China Sea develops eastward with time because of local air-sea interaction, causing summer SST warming in the western Pacific. The SST warming can further affect East Asian atmospheric circulation and precipitation through its impact on convection.展开更多
The first decadal leading mode of East Asian summer rainfall(EASR) is characterized by rainfall anomalies along the East Asian subtropical rain belt. This study focuses on the second decadal leading mode(2DLM), accoun...The first decadal leading mode of East Asian summer rainfall(EASR) is characterized by rainfall anomalies along the East Asian subtropical rain belt. This study focuses on the second decadal leading mode(2DLM), accounting for 17.3% of rainfall decadal variance, as distinct from the other two neighboring modes of EAMR, based on the state-of-the-art in-situ rainfall data.This mode is characterized by a South-China-wet–HuaiheRiver-dry pattern, and is dominated by a quasi-30-yr period. Further analysis reveals the 2DLM corresponds to an enhanced lower-level monsoon jet, an eastward extension of the western North Pacific subtropical high, and a weakened East Asian upper-level westerly jet flow. The Tibetan Plateau surface temperature and Pacific Decadal Oscillation(PDO) are closely linked with the 2DLM. The regressed SST pattern indicates the PDO-like pattern of sea surface temperature anomalies may have a teleconnection relationship with the 2DLM of EASR.展开更多
Based on the NCEP (National Centers for Environmental Prediction) data,the relationship between the Sea Surface Temperature Anomalies (SSTAs) in the North Pacific and the atmospheric circulation anomalies in January 2...Based on the NCEP (National Centers for Environmental Prediction) data,the relationship between the Sea Surface Temperature Anomalies (SSTAs) in the North Pacific and the atmospheric circulation anomalies in January 2008 is analyzed in this study.The SSTA mode most correlated with the Geopotential Height anomalies (GHAs) in January 2008 in the North Pacific exhibited a basin-wide horseshoe pattern with a warm center in November 2007.This persistent SSTA pattern would induce positive GHAs in the Aleutian Low area and East Asia and the northward extension of the West Pacific Subtropical High in January 2008 by maximum diabatic heating in the atmosphere over the Kuroshio Oyashio Extension (KOE) area,leading to the occurence of the circumpolar trough-ridge wave train anomaly in January 2008.展开更多
Using tropical cyclone (TC) observations over a 58-yr period (1949-2006) from the China Meteorological Administration, the 40-year ECMWF Reanalysis (ERA-40), NCEP-NCAR reanalysis, and the Hadley Centre sea ice a...Using tropical cyclone (TC) observations over a 58-yr period (1949-2006) from the China Meteorological Administration, the 40-year ECMWF Reanalysis (ERA-40), NCEP-NCAR reanalysis, and the Hadley Centre sea ice and sea surface temperature (HadISST) datasets, the authors have examined the behaviors of tropical cyclones (TCs) in the western north Pacific (WNP) in boreal winter (November-December-January-February). The results demonstrate that the occurrences of wintertime TCs, including super typhoons, have decreased over the 58 years. More TCs are found to move westward than northeastward, and the annual total number of parabolic-track-type TCs is found to be decreasing. It is shown that negative sea surface temperature anomalies (SSTAs) related to La Nifia events in the equatorial central Pacific facilitate more TC genesis in the WNP region. Large-scale anomalous cyclonic circulations in the tropical WNP in the lower troposphere are observed to be favorable for cyclogenesis in this area. On the contrary, the positive SSTAs and anomalous anticyclonic circulations that related to E1 Nifio events responsible for fewer TC genesis. Under the background of global warming, the western Pacific subtropical high tends to intensify and to expand more westward in the WNP, and the SSTAs display an increasing trend in the equatorial eastern-central Pacific. These climate trends of both atmospheric circulation and SSTAs affect wintertime TCs, inducing fewer TC occurrences and causing more TCs to move westward.展开更多
In this study,regional rainstorm events (RREs) in northeastern China associated with the activity of the Northeastern China Cold Vortex (NCCV) were investigated on a medium-range time scale.The RREs occurring in north...In this study,regional rainstorm events (RREs) in northeastern China associated with the activity of the Northeastern China Cold Vortex (NCCV) were investigated on a medium-range time scale.The RREs occurring in northeastern China could be categorized into three groups according to the distribution of heavy rainfall.The largest cluster is characterized by the rainstorm events that occur on the northwestern side of the Changbai Mountains along a southwest-northeast axis.These events occur most frequently during the post-meiyu period.The authors place particular emphasis on the RREs that belong to the largest cluster and are closely associated with the activity of the NCCV.These RREs were preconditioned by the transportation of substantial amounts of water vapor to which the anomalous western Pacific subtropical high (WPSH) contributed.The attendant anomalous WPSH was primarily driven by the anomalous transient eddy feedback forcing the nearby East Asian jet.The development of the NCCV circulation was concurrent with the RREs and acted as their primary causative factor.A perspective based on low-frequency dynamics indicates that Rossby wave packets emanated from the blocking-type circulation over northeastern Asia led to the development of the NCCV activity.展开更多
基金supported by the Special Public Welfare Research Fund of China Meteorological Administration (Grant No. GYHY201406020)the National Natural Science Foundation of China (Grant No. 41375055)
文摘In the summer of 2013, an unprecedented heat wave was experienced over a vast area of southern China. The great areal extent, duration, and strength of this high temperature are very rare. For the 2013 hot spell, the major and direct influence mostly came from the anomaly of the western Pacific subtropical high(WPSH). The abnormally strong and stable WPSH was associated with specific surrounding circulations. The eastward extension of a stronger Qinghai-Xizang high favored the westward extension of the WPSH. The weaker cold air activity from the polar region led to the northward shift of the WPSH and helped it to remain stable. In the tropics, the western segment of the ITCZ was abnormally strong in the period, and supported the maintenance of the WPSH from the south. In addition, the interdecadal variation of the WPSH provided a decadal background for the anomaly variation of the WPSH that summer.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41421004 and 41130103)the Special Fund for Public Welfare Industry (Mete orology) (Grant No. GYHY201306026)
文摘This study investigated the connection between the Australian summer monsoon(ASM) and summer precipitation over central China. It was found that,following a weaker-than-normal ASM, the East Asian summer monsoon and western North Pacific subtropical high tend to be stronger, yielding anomalous northward moisture to be transported from the western Pacific to central China. Besides, anomalous upwelling motion emerges over 30–37.5°N, along 110°E. Consequently,significant positive summer precipitation anomalies are located over central China. Further analysis indicated that the boreal winter sea surface temperature(SST) in the Indian Ocean and South China Sea shows positive anomalies in association with a weaker-than-normal ASM. The Indian Ocean warming in boreal winter could persist into the following summer because of its own long memory, emanating a baroclinic Kelvin wave into the Pacific that triggers suppressed convection and an anomalous anticyclone. Besides, the abnormal SST signal in the South China Sea develops eastward with time because of local air-sea interaction, causing summer SST warming in the western Pacific. The SST warming can further affect East Asian atmospheric circulation and precipitation through its impact on convection.
基金supported by the National Basic Research Program (973 Program, Grant No. 2012CB417203)the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201406001)+1 种基金Strategic Leading Science Projects of the Chinese Academy of Sciences (Grant No. XDA11010402)the National National Science Foundation of China (Grant Nos. 91337110 and 40805038)
文摘The first decadal leading mode of East Asian summer rainfall(EASR) is characterized by rainfall anomalies along the East Asian subtropical rain belt. This study focuses on the second decadal leading mode(2DLM), accounting for 17.3% of rainfall decadal variance, as distinct from the other two neighboring modes of EAMR, based on the state-of-the-art in-situ rainfall data.This mode is characterized by a South-China-wet–HuaiheRiver-dry pattern, and is dominated by a quasi-30-yr period. Further analysis reveals the 2DLM corresponds to an enhanced lower-level monsoon jet, an eastward extension of the western North Pacific subtropical high, and a weakened East Asian upper-level westerly jet flow. The Tibetan Plateau surface temperature and Pacific Decadal Oscillation(PDO) are closely linked with the 2DLM. The regressed SST pattern indicates the PDO-like pattern of sea surface temperature anomalies may have a teleconnection relationship with the 2DLM of EASR.
基金supported by Chinese NSFC (Grant Nos.40830106 and 40676010)the Ministry of Science and Technology of China (National Key Program for Developing Basic Science,Grant No. 2007CB411803)
文摘Based on the NCEP (National Centers for Environmental Prediction) data,the relationship between the Sea Surface Temperature Anomalies (SSTAs) in the North Pacific and the atmospheric circulation anomalies in January 2008 is analyzed in this study.The SSTA mode most correlated with the Geopotential Height anomalies (GHAs) in January 2008 in the North Pacific exhibited a basin-wide horseshoe pattern with a warm center in November 2007.This persistent SSTA pattern would induce positive GHAs in the Aleutian Low area and East Asia and the northward extension of the West Pacific Subtropical High in January 2008 by maximum diabatic heating in the atmosphere over the Kuroshio Oyashio Extension (KOE) area,leading to the occurence of the circumpolar trough-ridge wave train anomaly in January 2008.
基金jointly supported by the National Basic Research Program of China (973 Program) (2009CB421505)the National Key Technology R&D Program in the 11th Five-year Plan of China (2006BAC02B01)
文摘Using tropical cyclone (TC) observations over a 58-yr period (1949-2006) from the China Meteorological Administration, the 40-year ECMWF Reanalysis (ERA-40), NCEP-NCAR reanalysis, and the Hadley Centre sea ice and sea surface temperature (HadISST) datasets, the authors have examined the behaviors of tropical cyclones (TCs) in the western north Pacific (WNP) in boreal winter (November-December-January-February). The results demonstrate that the occurrences of wintertime TCs, including super typhoons, have decreased over the 58 years. More TCs are found to move westward than northeastward, and the annual total number of parabolic-track-type TCs is found to be decreasing. It is shown that negative sea surface temperature anomalies (SSTAs) related to La Nifia events in the equatorial central Pacific facilitate more TC genesis in the WNP region. Large-scale anomalous cyclonic circulations in the tropical WNP in the lower troposphere are observed to be favorable for cyclogenesis in this area. On the contrary, the positive SSTAs and anomalous anticyclonic circulations that related to E1 Nifio events responsible for fewer TC genesis. Under the background of global warming, the western Pacific subtropical high tends to intensify and to expand more westward in the WNP, and the SSTAs display an increasing trend in the equatorial eastern-central Pacific. These climate trends of both atmospheric circulation and SSTAs affect wintertime TCs, inducing fewer TC occurrences and causing more TCs to move westward.
基金jointly supported by the National Natural Science Foundation of China(Grant No.40975033)the National Key Technologies R&D Program of China(Grant No.2009BAC51B02)
文摘In this study,regional rainstorm events (RREs) in northeastern China associated with the activity of the Northeastern China Cold Vortex (NCCV) were investigated on a medium-range time scale.The RREs occurring in northeastern China could be categorized into three groups according to the distribution of heavy rainfall.The largest cluster is characterized by the rainstorm events that occur on the northwestern side of the Changbai Mountains along a southwest-northeast axis.These events occur most frequently during the post-meiyu period.The authors place particular emphasis on the RREs that belong to the largest cluster and are closely associated with the activity of the NCCV.These RREs were preconditioned by the transportation of substantial amounts of water vapor to which the anomalous western Pacific subtropical high (WPSH) contributed.The attendant anomalous WPSH was primarily driven by the anomalous transient eddy feedback forcing the nearby East Asian jet.The development of the NCCV circulation was concurrent with the RREs and acted as their primary causative factor.A perspective based on low-frequency dynamics indicates that Rossby wave packets emanated from the blocking-type circulation over northeastern Asia led to the development of the NCCV activity.