为了鉴别西湖龙井和浙江龙井茶叶,采用近红外光谱分析技术结合化学计量学方法建立了识别模型。先对原始光谱进行标准正态变换(Standard Normal Variant,SNV)预处理,然后分别采用最小二乘判别分析(Partial Least Square Regression-discr...为了鉴别西湖龙井和浙江龙井茶叶,采用近红外光谱分析技术结合化学计量学方法建立了识别模型。先对原始光谱进行标准正态变换(Standard Normal Variant,SNV)预处理,然后分别采用最小二乘判别分析(Partial Least Square Regression-discriminantAnalysis,PLS-DA)、最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)和径向基人工神经网络(Radial Basis Function Neural Network,RBFNN)三种模型对西湖龙井和浙江龙井茶叶进行预测。最小二乘支持向量机参数通过网格搜索和完全交叉验证得到优化。经优化后,惩罚系数(γ)和核函数参数(δ~2)分别为229.1和124.9;RBFNN最佳隐藏层神经元个数为27个。通过比较可知,LSSVM的预测性能最好,其校正集均方根误差(RMSECV)和相关系数(R^2)分别为0和1,验证集均方根误差(RMSEP)和相关系数(R^2)也分别为0和1,分辨正确率为100%。展开更多
文摘为了鉴别西湖龙井和浙江龙井茶叶,采用近红外光谱分析技术结合化学计量学方法建立了识别模型。先对原始光谱进行标准正态变换(Standard Normal Variant,SNV)预处理,然后分别采用最小二乘判别分析(Partial Least Square Regression-discriminantAnalysis,PLS-DA)、最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)和径向基人工神经网络(Radial Basis Function Neural Network,RBFNN)三种模型对西湖龙井和浙江龙井茶叶进行预测。最小二乘支持向量机参数通过网格搜索和完全交叉验证得到优化。经优化后,惩罚系数(γ)和核函数参数(δ~2)分别为229.1和124.9;RBFNN最佳隐藏层神经元个数为27个。通过比较可知,LSSVM的预测性能最好,其校正集均方根误差(RMSECV)和相关系数(R^2)分别为0和1,验证集均方根误差(RMSEP)和相关系数(R^2)也分别为0和1,分辨正确率为100%。