A total of 206 SSR (Simple Sequence Repeats) primer pairs were used to detect genetic diversity in 52 accessions of three unique wheat varieties of western China. A total of 488, 472, and 308 allelic variants were d...A total of 206 SSR (Simple Sequence Repeats) primer pairs were used to detect genetic diversity in 52 accessions of three unique wheat varieties of western China. A total of 488, 472, and 308 allelic variants were detected in 31 Yunnan, 15 Tibetan and 6 Xinjiang wheat accessions with an average of PIC values 0.2764, 0.3082, and 0.1944, respectively. Substantial differences in allelic polymorphisms were detected by SSR markers in all the 21 chromosomes, the 7 homoeologous groups, and the three genomes (A, B, and D) in Yunnan, Tibetan, and Xinjiang wheat. The highest and lowest allelic polymorphisms in all the 21 chromosomes were observed in 3B and 1D chromosomes, respectively. The lowest and highest allelic polymorphisms among the seven homoeologous groups was observed in 6 and 3 homoeologous groups, respectively. Among the three genomes, B genome showed the highest, A the intermediate, and D the lowest allelic polymorphism. The genetic distance (GD) indexes within Yunnan, Tibetan, and Xinjiang wheat, and between different wheat types were calculated. The GD value was found to be much higher within Yunnan and Tibetan wheat than within Xinjiang wheat, but the GD value between Yunnan and Tibetan wheat was lower than those between Yunnan and Xinjiang wheat, and between Tibetan and Xinjiang wheat. The cluster analysis indicated a closer relationship between Yunnan and Tibetan wheat than that between Yunnan and Xinjiang wheat or between Tibetan and Xinjiang wheat.展开更多
Genetic diversity at Gli_1, Gli_2 and Glu_1 loci was investigated in 32 accessions of Chinese endemic wheat by using acid polyacrylamide gel electrophoresis (APAGE) and sodium dodecyl sulfate (SDS)_PAGE. There were 8 ...Genetic diversity at Gli_1, Gli_2 and Glu_1 loci was investigated in 32 accessions of Chinese endemic wheat by using acid polyacrylamide gel electrophoresis (APAGE) and sodium dodecyl sulfate (SDS)_PAGE. There were 8 gliadin and 3 high_molecular_weight (HMW)_glutenin patterns in 14 Yunnan hulled wheat ( Triticum aestivum ssp. yunnanese King) accessions, 9 gliadin and 4 HMW_glutenin patterns in 9 Tibetan weedrace ( T. aestivum ssp. tibetanum Shao ) accessions, and 9 gliadin and 5 HMW_glutenin patterns in 9 Xinjiang rice wheat ( T. petropavlovskyi Udacz. et Migusch.) accessions. One accession (i.e. Daomai 2) carried new subunits 2.1+10.1 encoded by Glu_D1. Among the three Chinese endemic wheat groups, a total of 10, 14 and 11 alleles at Gli_1 locus; 11, 14 and 12 alleles at Gli_2 locus; and 5, 6 and 8 alleles at Glu_1 locus were identified, respectively. Among Yunnan hulled wheat, Tibetan weedrace and Xinjiang rice wheat, the Nei's genetic variation indexes were 0.3798, 0.5625 and 0.5693, respectively. These results suggested that Tibetan weedrace and Xinjiang rice wheat had higher genetic diversity than Yunnan hulled wheat.展开更多
Soil carbon to nitrogen(C/N) ratio is one of the most important variables reflecting soil quality and ecological function,and an indicator for assessing carbon and nitrogen nutrition balance of soils.Its variation ref...Soil carbon to nitrogen(C/N) ratio is one of the most important variables reflecting soil quality and ecological function,and an indicator for assessing carbon and nitrogen nutrition balance of soils.Its variation reflects the carbon and nitrogen cycling of soils.In order to explore the spatial variability of soil C/N ratio and its controlling factors of the Ili River valley in Xinjiang Uygur Autonomous Region,Northwest China,the traditional statistical methods,including correlation analysis,geostatistic alanalys and multiple regression analysis were used.The statistical results showed that the soil C/N ratio varied from 7.00 to 23.11,with a mean value of 10.92,and the coefficient of variation was 31.3%.Correlation analysis showed that longitude,altitude,precipitation,soil water,organic carbon,and total nitrogen were positively correlated with the soil C/N ratio(P < 0.01),whereas negative correlations were found between the soil C/N ratio and latitude,temperature,soil bulk density and soil p H.Ordinary Cokriging interpolation showed that r and ME were 0.73 and 0.57,respectively,indicating that the prediction accuracy was high.The spatial autocorrelation of the soil C/N ratio was 6.4 km,and the nugget effect of the soil C/N ratio was 10% with a patchy distribution,in which the area with high value(12.00–20.41) accounted for 22.6% of the total area.Land uses changed the soil C/N ratio with the order of cultivated land > grass land > forest land > garden.Multiple regression analysis showed that geographical and climatic factors,and soil physical and chemical properties could independently explain 26.8%and 55.4% of the spatial features of soil C/N ratio,while human activities could independently explain 5.4% of the spatial features only.The spatial distribution of soil C/N ratio in the study has important reference value for managing soil carbon and nitrogen,and for improving ecological function to similar regions.展开更多
Lake Lop Nur is located in the eastern part of the Tarim Basin in Xinjiang,northwestern China.A 220-cm-long sediment core was collected from the center of the ear-shaped depression forming the basin and dated with AMS...Lake Lop Nur is located in the eastern part of the Tarim Basin in Xinjiang,northwestern China.A 220-cm-long sediment core was collected from the center of the ear-shaped depression forming the basin and dated with AMS^(14)C.Grain size,total organic matter(TOC),total nitrogen(TN),and TOC/TN(C/N)analyses were used to reconstruct climatic conditions from 13.0 to 5.6 cal ka BP.The results showed fi ve main climatic stages.Zone I(13.0–11.3 cal ka BP)was a wet–dry environment,whereas Zone II(11.3–8.9 cal ka BP)consisted of a primarily wet environment.Zone III(8.9–7.7 cal ka BP)was subdivided into Zone IIIa(8.9–8.2 cal ka BP)that indicated lake constriction and dry climate,and Zone IIIb(8.2–7.7 cal ka BP)in which the proxies indicated wet conditions.In Zone IV(7.7–6.6 cal ka BP),the climate presented a bit wet conditions.In Zone V(6.6–5.6 cal ka BP),abundant glauberite is present in the sediment and silt dominates the lithology;these results indicate the lake shrank and the overall climate was dry.Abrupt environmental events were also identifi ed,including six dry events at 11.0,10.5,9.3,8.6,8.2,and 7.6 cal ka BP and one fl ood event from 7.8 to 7.7 cal ka BP in the Early–Middle Holocene.展开更多
This paper briefly introduces the Seismotectonic Map of Xinjiang and its neighborhood in the scale of 1∶2500000.The map is amended,supplemented and expanded based of the newly compiled Seismotectonic Map of Xinjiang ...This paper briefly introduces the Seismotectonic Map of Xinjiang and its neighborhood in the scale of 1∶2500000.The map is amended,supplemented and expanded based of the newly compiled Seismotectonic Map of Xinjiang in scale 1∶1000000.The base map of this seismotectonic map is the geologic map of western China and its neighborhood compiled by Li Tingdong.The abundant new materials from related research,referential literatures and the analyses on remote sensing data were used in the compiling work.A database and relevant documents are built for nearly 300 active faults and 150 active folds.The basic information of the major active faults,especially those near the border areas in this map are introduced in this paper.展开更多
The urban and rural integration is a new stage of city development, which is a process of urban and rural mutual supplementary integration, collaborative development and mutual prosperity. It takes the industry and ag...The urban and rural integration is a new stage of city development, which is a process of urban and rural mutual supplementary integration, collaborative development and mutual prosperity. It takes the industry and agriculture, city and countryside as a whole, with overall planning and coordination development, through system innovation and policy adjustment, in order to realize the integration development of urban and rural planning construction, industrial development, infrastructure, ecological environment and social career. This paper conducts the empirical analysis on the urban and rural integration construction development of Changji City of Changji Region in Xinjiang, studying the existing problems and restrictive factors of the process in promoting urban and rural integration construction in western region of China and trying to propose the corresponding countermeasures.展开更多
From May 4 to May 30, 2011, a field exploration of the Ashikule basin in the Western Kunlun Mountains area was conducted by a research team from the Institute of Geology, China Earthquake Administration and Earthquake...From May 4 to May 30, 2011, a field exploration of the Ashikule basin in the Western Kunlun Mountains area was conducted by a research team from the Institute of Geology, China Earthquake Administration and Earthquake Administration of Xinjiang Uygur Autonomous Region. This work is financially supported by the special fund for China earthquake research project "The Comprehensive Scientific Exploration of the MS7.3 Yutian Earthquake in 2008 and the Ashikule Volcano Group". Through detailed field survey on geological and geomorphological features of the Ashikule volcano group, which is one of the highest altitude volcanic plateaus (about 5000m) in the world, we have determined the total number of volcanoes, the eruption type and structural parameters, and approximate active history of the volcano group. Our studies have provided field evidence for resolving past controversies such as the authenticity of the news report about the eruption event on May 27, 1951, the eruption pattern of the Daheishan volcano, and the reality of the Gaotaishan volcano.展开更多
Changes in the vegetation and climate of the westerly-dominated areas in Central Asia during the Holocene were interpreted using pollen-assemblages and charcoal data from a 300-cm-long sediment core of the Sayram Lake...Changes in the vegetation and climate of the westerly-dominated areas in Central Asia during the Holocene were interpreted using pollen-assemblages and charcoal data from a 300-cm-long sediment core of the Sayram Lake,northern Xinjiang.Accele-rator Mass Spectrometry(AMS) radiocarbon dating methods were applied to bulk organic matter of the samples.Artemisia spp./Chenopodiaceae ratios and results from principal component analysis were used to infer that the lake basin was dominated by desert vegetation before ca.9.6 cal.ka BP,which suggests a warm and dry climate in the early Holocene.Desert steppe/steppe expanded during 9.6-5.5 cal.ka BP,indicating a remarkable increase both in the precipitation and temperature during the mid-Holocene.Desert vegetation dominated between 6.5 and 5.5 cal.ka BP,marking an extreme warmer and drier interval.The steppe/meadow steppe recovered,and temperatures decreased from 5.5 cal.ka BP in the late Holocene,as indicated by the increased abundance of Artemisia and the development of meadows.Holocene temperatures and moisture variations in the Sayram Lake areas were similar to those of adjacent areas.This consistency implies that solar radiation was the main driving factor for regional temperature changes,and that the effect of temperature variations was significant on regional changes in humidity.The evolution of climate and environment in the Sayram Lake areas,which were characterized as dry in the early Holocene and relatively humid in the middle-late Holocene,are clearly different from those in monsoonal areas.Dry conditions in the early Holocene in the Sayram Lake areas were closely related to decreased water vapor advection.These conditions were a result of reduced westerly wind speeds and less evaporation upstream,which in turn were caused by seasonal changes in solar radiation superimposed by strong evaporation following warming and drying local climate.展开更多
Located in the inland arid area of central Asia, salt-affected farmlands take up one third of the total irrigated land area in Xinjiang of Northwest China. Spatio-temporal variability of soil salinity and the underlyi...Located in the inland arid area of central Asia, salt-affected farmlands take up one third of the total irrigated land area in Xinjiang of Northwest China. Spatio-temporal variability of soil salinity and the underlying mechanism are fundamental problems challenging the sustainability of oasis agriculture in China. In this study, the data of total dissolved solids(TDS) measured for soil samples collected from 27 representative study areas in the oasis areas of Xinjiang were analyzed and the coefficient of variation(CV) and stratification ratio(SR) of TDS were used to describe the lateral and vertical soil salinity variations, respectively. Weekly, monthly,and annual changes in soil salinity were also summarized. Results showed that the top(0–20 cm) soil salinity was highly variable(CV> 75%) for most studied areas. Lateral variation of soil salinity was significantly correlated with the sampling interval; as a result, a maximum sampling interval of 0.9 m was found for reducing evaluation uncertainty. The top 0–20 cm soil salt accounted for about25.2% of the total salt in the 0–100 cm soil profile. The stratification ratio values(the ratio of TDS at the 20–40 cm depth to that at the 0–20 cm depth) were mostly smaller than 1 and on average 0.92, illustrating that the top 0–20 cm soil contained slightly more salt and a considerable amount of salt still existed in subsurface and deep horizons. Irrigation reduced top soil salinity by 0.52 g kg-1, or14.6%, within the first week. On average, the relative range of soil salinity, calculated to indicate monthly changes in soil salinity, was58.2% from May to September. A 27-year experiment indicated that cultivation increased soil salinity by 44.4% at a rate of 0.14 g kg-1year-1. At small spatio-temporal scales, soil salinity variation was mainly affected by anthropogenic factors, such as irrigation and land use. However, natural factors, including groundwater, topography, and climate conditions, mainly influenced soil salinity variation at large spatio-temporal scales. This study displayed the highly variable nature of soil salinity in space and time. Those driving factors identified in this study could provide guidelines for developing sustainable agriculture in the oasis areas and combating salinization in arid regions of China.展开更多
基金Hi-Tech Research and Development (863) Program of China (No. 2006AA10Z1F6)Hi-Tech Re-search of Jiangsu Province (No.BG2005310)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University (No.10418) (PCSIRT)Innovation Foundation of Young Science and Technology of Nanjing Agriculture UniversityIntroduction of Talents Foundation of Nanjing Agriculture University.
文摘A total of 206 SSR (Simple Sequence Repeats) primer pairs were used to detect genetic diversity in 52 accessions of three unique wheat varieties of western China. A total of 488, 472, and 308 allelic variants were detected in 31 Yunnan, 15 Tibetan and 6 Xinjiang wheat accessions with an average of PIC values 0.2764, 0.3082, and 0.1944, respectively. Substantial differences in allelic polymorphisms were detected by SSR markers in all the 21 chromosomes, the 7 homoeologous groups, and the three genomes (A, B, and D) in Yunnan, Tibetan, and Xinjiang wheat. The highest and lowest allelic polymorphisms in all the 21 chromosomes were observed in 3B and 1D chromosomes, respectively. The lowest and highest allelic polymorphisms among the seven homoeologous groups was observed in 6 and 3 homoeologous groups, respectively. Among the three genomes, B genome showed the highest, A the intermediate, and D the lowest allelic polymorphism. The genetic distance (GD) indexes within Yunnan, Tibetan, and Xinjiang wheat, and between different wheat types were calculated. The GD value was found to be much higher within Yunnan and Tibetan wheat than within Xinjiang wheat, but the GD value between Yunnan and Tibetan wheat was lower than those between Yunnan and Xinjiang wheat, and between Tibetan and Xinjiang wheat. The cluster analysis indicated a closer relationship between Yunnan and Tibetan wheat than that between Yunnan and Xinjiang wheat or between Tibetan and Xinjiang wheat.
文摘Genetic diversity at Gli_1, Gli_2 and Glu_1 loci was investigated in 32 accessions of Chinese endemic wheat by using acid polyacrylamide gel electrophoresis (APAGE) and sodium dodecyl sulfate (SDS)_PAGE. There were 8 gliadin and 3 high_molecular_weight (HMW)_glutenin patterns in 14 Yunnan hulled wheat ( Triticum aestivum ssp. yunnanese King) accessions, 9 gliadin and 4 HMW_glutenin patterns in 9 Tibetan weedrace ( T. aestivum ssp. tibetanum Shao ) accessions, and 9 gliadin and 5 HMW_glutenin patterns in 9 Xinjiang rice wheat ( T. petropavlovskyi Udacz. et Migusch.) accessions. One accession (i.e. Daomai 2) carried new subunits 2.1+10.1 encoded by Glu_D1. Among the three Chinese endemic wheat groups, a total of 10, 14 and 11 alleles at Gli_1 locus; 11, 14 and 12 alleles at Gli_2 locus; and 5, 6 and 8 alleles at Glu_1 locus were identified, respectively. Among Yunnan hulled wheat, Tibetan weedrace and Xinjiang rice wheat, the Nei's genetic variation indexes were 0.3798, 0.5625 and 0.5693, respectively. These results suggested that Tibetan weedrace and Xinjiang rice wheat had higher genetic diversity than Yunnan hulled wheat.
基金Under the auspices of National Science and Technology Support Program of China(No.2014BAC15B03)the West Light Funds of Chinese Academy of Sciences(No.YB201302)
文摘Soil carbon to nitrogen(C/N) ratio is one of the most important variables reflecting soil quality and ecological function,and an indicator for assessing carbon and nitrogen nutrition balance of soils.Its variation reflects the carbon and nitrogen cycling of soils.In order to explore the spatial variability of soil C/N ratio and its controlling factors of the Ili River valley in Xinjiang Uygur Autonomous Region,Northwest China,the traditional statistical methods,including correlation analysis,geostatistic alanalys and multiple regression analysis were used.The statistical results showed that the soil C/N ratio varied from 7.00 to 23.11,with a mean value of 10.92,and the coefficient of variation was 31.3%.Correlation analysis showed that longitude,altitude,precipitation,soil water,organic carbon,and total nitrogen were positively correlated with the soil C/N ratio(P < 0.01),whereas negative correlations were found between the soil C/N ratio and latitude,temperature,soil bulk density and soil p H.Ordinary Cokriging interpolation showed that r and ME were 0.73 and 0.57,respectively,indicating that the prediction accuracy was high.The spatial autocorrelation of the soil C/N ratio was 6.4 km,and the nugget effect of the soil C/N ratio was 10% with a patchy distribution,in which the area with high value(12.00–20.41) accounted for 22.6% of the total area.Land uses changed the soil C/N ratio with the order of cultivated land > grass land > forest land > garden.Multiple regression analysis showed that geographical and climatic factors,and soil physical and chemical properties could independently explain 26.8%and 55.4% of the spatial features of soil C/N ratio,while human activities could independently explain 5.4% of the spatial features only.The spatial distribution of soil C/N ratio in the study has important reference value for managing soil carbon and nitrogen,and for improving ecological function to similar regions.
基金Supported by the National Natural Science Foundation of China(No.41271205)the PhD Research Startup Foundation of Heibei GEO Univerity(No.BQ201604)
文摘Lake Lop Nur is located in the eastern part of the Tarim Basin in Xinjiang,northwestern China.A 220-cm-long sediment core was collected from the center of the ear-shaped depression forming the basin and dated with AMS^(14)C.Grain size,total organic matter(TOC),total nitrogen(TN),and TOC/TN(C/N)analyses were used to reconstruct climatic conditions from 13.0 to 5.6 cal ka BP.The results showed fi ve main climatic stages.Zone I(13.0–11.3 cal ka BP)was a wet–dry environment,whereas Zone II(11.3–8.9 cal ka BP)consisted of a primarily wet environment.Zone III(8.9–7.7 cal ka BP)was subdivided into Zone IIIa(8.9–8.2 cal ka BP)that indicated lake constriction and dry climate,and Zone IIIb(8.2–7.7 cal ka BP)in which the proxies indicated wet conditions.In Zone IV(7.7–6.6 cal ka BP),the climate presented a bit wet conditions.In Zone V(6.6–5.6 cal ka BP),abundant glauberite is present in the sediment and silt dominates the lithology;these results indicate the lake shrank and the overall climate was dry.Abrupt environmental events were also identifi ed,including six dry events at 11.0,10.5,9.3,8.6,8.2,and 7.6 cal ka BP and one fl ood event from 7.8 to 7.7 cal ka BP in the Early–Middle Holocene.
基金Funded by the State Special Project for International Cooperation on Science and Technology(2012DFR20440K02)the 973 Program(2008CB4257)
文摘This paper briefly introduces the Seismotectonic Map of Xinjiang and its neighborhood in the scale of 1∶2500000.The map is amended,supplemented and expanded based of the newly compiled Seismotectonic Map of Xinjiang in scale 1∶1000000.The base map of this seismotectonic map is the geologic map of western China and its neighborhood compiled by Li Tingdong.The abundant new materials from related research,referential literatures and the analyses on remote sensing data were used in the compiling work.A database and relevant documents are built for nearly 300 active faults and 150 active folds.The basic information of the major active faults,especially those near the border areas in this map are introduced in this paper.
文摘The urban and rural integration is a new stage of city development, which is a process of urban and rural mutual supplementary integration, collaborative development and mutual prosperity. It takes the industry and agriculture, city and countryside as a whole, with overall planning and coordination development, through system innovation and policy adjustment, in order to realize the integration development of urban and rural planning construction, industrial development, infrastructure, ecological environment and social career. This paper conducts the empirical analysis on the urban and rural integration construction development of Changji City of Changji Region in Xinjiang, studying the existing problems and restrictive factors of the process in promoting urban and rural integration construction in western region of China and trying to propose the corresponding countermeasures.
基金sponsored by the Special Fund for China Earthquake Research (201008004)the Special Projects of the Fundamental Scientific Research of the Institute of Geology,CEA (IGCEA1101)
文摘From May 4 to May 30, 2011, a field exploration of the Ashikule basin in the Western Kunlun Mountains area was conducted by a research team from the Institute of Geology, China Earthquake Administration and Earthquake Administration of Xinjiang Uygur Autonomous Region. This work is financially supported by the special fund for China earthquake research project "The Comprehensive Scientific Exploration of the MS7.3 Yutian Earthquake in 2008 and the Ashikule Volcano Group". Through detailed field survey on geological and geomorphological features of the Ashikule volcano group, which is one of the highest altitude volcanic plateaus (about 5000m) in the world, we have determined the total number of volcanoes, the eruption type and structural parameters, and approximate active history of the volcano group. Our studies have provided field evidence for resolving past controversies such as the authenticity of the news report about the eruption event on May 27, 1951, the eruption pattern of the Daheishan volcano, and the reality of the Gaotaishan volcano.
基金supported by National Natural Science Foundation of China(Grant No.40802084)International Science&Technology Cooperation Program of China(Grant No.2011DFA21240)the CAS/SAFEA International Partnership Program for Creative Research Teams(Grant No.KZZDEW-TZ-08)
文摘Changes in the vegetation and climate of the westerly-dominated areas in Central Asia during the Holocene were interpreted using pollen-assemblages and charcoal data from a 300-cm-long sediment core of the Sayram Lake,northern Xinjiang.Accele-rator Mass Spectrometry(AMS) radiocarbon dating methods were applied to bulk organic matter of the samples.Artemisia spp./Chenopodiaceae ratios and results from principal component analysis were used to infer that the lake basin was dominated by desert vegetation before ca.9.6 cal.ka BP,which suggests a warm and dry climate in the early Holocene.Desert steppe/steppe expanded during 9.6-5.5 cal.ka BP,indicating a remarkable increase both in the precipitation and temperature during the mid-Holocene.Desert vegetation dominated between 6.5 and 5.5 cal.ka BP,marking an extreme warmer and drier interval.The steppe/meadow steppe recovered,and temperatures decreased from 5.5 cal.ka BP in the late Holocene,as indicated by the increased abundance of Artemisia and the development of meadows.Holocene temperatures and moisture variations in the Sayram Lake areas were similar to those of adjacent areas.This consistency implies that solar radiation was the main driving factor for regional temperature changes,and that the effect of temperature variations was significant on regional changes in humidity.The evolution of climate and environment in the Sayram Lake areas,which were characterized as dry in the early Holocene and relatively humid in the middle-late Holocene,are clearly different from those in monsoonal areas.Dry conditions in the early Holocene in the Sayram Lake areas were closely related to decreased water vapor advection.These conditions were a result of reduced westerly wind speeds and less evaporation upstream,which in turn were caused by seasonal changes in solar radiation superimposed by strong evaporation following warming and drying local climate.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest of China(No.200903001-3)the National Natural Science Foundation of China(No.41301231)the Recruitment Program of High-Level Talents of Xinjiang,China
文摘Located in the inland arid area of central Asia, salt-affected farmlands take up one third of the total irrigated land area in Xinjiang of Northwest China. Spatio-temporal variability of soil salinity and the underlying mechanism are fundamental problems challenging the sustainability of oasis agriculture in China. In this study, the data of total dissolved solids(TDS) measured for soil samples collected from 27 representative study areas in the oasis areas of Xinjiang were analyzed and the coefficient of variation(CV) and stratification ratio(SR) of TDS were used to describe the lateral and vertical soil salinity variations, respectively. Weekly, monthly,and annual changes in soil salinity were also summarized. Results showed that the top(0–20 cm) soil salinity was highly variable(CV> 75%) for most studied areas. Lateral variation of soil salinity was significantly correlated with the sampling interval; as a result, a maximum sampling interval of 0.9 m was found for reducing evaluation uncertainty. The top 0–20 cm soil salt accounted for about25.2% of the total salt in the 0–100 cm soil profile. The stratification ratio values(the ratio of TDS at the 20–40 cm depth to that at the 0–20 cm depth) were mostly smaller than 1 and on average 0.92, illustrating that the top 0–20 cm soil contained slightly more salt and a considerable amount of salt still existed in subsurface and deep horizons. Irrigation reduced top soil salinity by 0.52 g kg-1, or14.6%, within the first week. On average, the relative range of soil salinity, calculated to indicate monthly changes in soil salinity, was58.2% from May to September. A 27-year experiment indicated that cultivation increased soil salinity by 44.4% at a rate of 0.14 g kg-1year-1. At small spatio-temporal scales, soil salinity variation was mainly affected by anthropogenic factors, such as irrigation and land use. However, natural factors, including groundwater, topography, and climate conditions, mainly influenced soil salinity variation at large spatio-temporal scales. This study displayed the highly variable nature of soil salinity in space and time. Those driving factors identified in this study could provide guidelines for developing sustainable agriculture in the oasis areas and combating salinization in arid regions of China.