The new method for determining ground-motion parameters in the Indonesian Earthquake Resistant Building Code SNI (Indonesia National Standard) 03-1726-2012 has significant changes than the previous code. The maps of...The new method for determining ground-motion parameters in the Indonesian Earthquake Resistant Building Code SNI (Indonesia National Standard) 03-1726-2012 has significant changes than the previous code. The maps of mean and modal of magnitude and distance presented here are intended to convey information about the distribution ofprobabilistic seismic sources and to provide prescriptions or suggestions for seismic sources to use in developing artificial ground motion in building design or retrofit projects. This paper presents deaggregation of Indonesia Seismic Hazard Map 2010 for Sumatra. Deaggregation for 0.2-s and 1.0-s pseudo SA (spectral acceleration) is performed for 10% PE (probability of exceedance) in 50 years (475-year mean return period) and 2% PE in 50 years (2,475-year mean return period). The information of deaggregation analysis can and perhaps should be considered in a complex seismic-resistant design decision-making environment.展开更多
文摘The new method for determining ground-motion parameters in the Indonesian Earthquake Resistant Building Code SNI (Indonesia National Standard) 03-1726-2012 has significant changes than the previous code. The maps of mean and modal of magnitude and distance presented here are intended to convey information about the distribution ofprobabilistic seismic sources and to provide prescriptions or suggestions for seismic sources to use in developing artificial ground motion in building design or retrofit projects. This paper presents deaggregation of Indonesia Seismic Hazard Map 2010 for Sumatra. Deaggregation for 0.2-s and 1.0-s pseudo SA (spectral acceleration) is performed for 10% PE (probability of exceedance) in 50 years (475-year mean return period) and 2% PE in 50 years (2,475-year mean return period). The information of deaggregation analysis can and perhaps should be considered in a complex seismic-resistant design decision-making environment.