Zelongnong Ravine,a branch ravine of Brahmaputra,is an old large glacier debris-flow ravine.Debris-flows with medium and/or small scales occur almost every year;multiple super debris-flows have also broken out in hist...Zelongnong Ravine,a branch ravine of Brahmaputra,is an old large glacier debris-flow ravine.Debris-flows with medium and/or small scales occur almost every year;multiple super debris-flows have also broken out in history,and have caused destructive disaster to local residents at the mouth of ravine and blocked Brahmaputra.The huge altitude difference and the steep slope of the Zelongnong Ravine provide predominant energy conditions for the debris-flow.The drainage basin is located in the fast uplifted area,where the complicated geologic structure,the cracked rock,and the frequent earthquake make the rocks experience strong weathering,thus plenty of granular materials are available for the formation of debris-flows.Although this region is located in the rain shadow area,the precipitation is concentrated and most is with high intensity.Also,the strong glacier activity provides water source for debris-flow.According to literature reviews,most debris-flows in the ravine are induced by rainstorms,and their scales are relatively small.However,when the melted water is overlaid,the large scale debris-flows may occur.Parametric calculation such as the flow velocity and the runoff is conducted according to the monitoring data.The result shows that large debris-flows can be aroused when the rainstorm and the melted water are combined well,but the possibility of blocking off Brahmaputra is rare.The occurrence of the super debris-flows is closely related to the intense glacier activity(e.g.,glaciersurge).They often result in destructive disasters and are hard to be prevented and cured by engineering measures,due to the oversized scales.The hazard mitigation measures such as monitoring and prediction are proposed.展开更多
An earthquake with magnitude of 5.7 took place on Aug. 18, 2003 in the Nyingchi Region, Tibet. The macroseismic epicenter was located in the unpopniated high mountain area, 13 km south of Zhamo town, Bond County. The ...An earthquake with magnitude of 5.7 took place on Aug. 18, 2003 in the Nyingchi Region, Tibet. The macroseismic epicenter was located in the unpopniated high mountain area, 13 km south of Zhamo town, Bond County. The seismic intensity in the meizoseismal region was Ⅶ degree. The Ⅶ and Ⅵ areas were 2000 km^2 and 11000 km^2 , respectively. This seismic event is related to the movements of the Lhari fault trending in the NW direction and the ZhamoManiweng fault trending in the NE direction. As a result of this earthquakes, the buildings in the areas were badly damaged.展开更多
In regards to the earthquakes recording M ≥ 5.0 that occurred in middle northern part of the Qinghai-Xizang (Tibet) Block from 1970 - 2003, in this study we describe the temporal and spatial centralization features...In regards to the earthquakes recording M ≥ 5.0 that occurred in middle northern part of the Qinghai-Xizang (Tibet) Block from 1970 - 2003, in this study we describe the temporal and spatial centralization features of the weak earthquakes and the enhancement and anomalous quiescence of their seismic activity before main shocks through 4 parameters, which are basically not correlated: earthquake time centralization degree parameter Ct, earthquake space centralization degree parameter Cd, η value and weak earthquake frequency and so on. On the basis of calculation results, it has been seen that before earthquakes with M ≥ 5.0 took place in the middle northern part of the Qinghal-Xizang (Tibet) Block, the frequency of weak earthquakes often shows ascent and drop, their strength shows an obvious enhancement and the centralization distribution with time and space is evident.展开更多
We have studied the seismicity features of M_S≥5.0 earthquakes two years before strong earthquakes with M_S≥7.0 occurred in the central-northern Qinghai-Xizang (Tibet) block since 1920. The results have showed that ...We have studied the seismicity features of M_S≥5.0 earthquakes two years before strong earthquakes with M_S≥7.0 occurred in the central-northern Qinghai-Xizang (Tibet) block since 1920. The results have showed that there is an obvious gap or quiescence of M_S5.0~6.9 earthquakes near epicenters. We have also studied statistical seismicity parameters of M_S5.0~6.9 earthquakes in the same region since 1950. The results have showed that earthquakes with M_S≥7.0 occurred when earthquake frequency is relatively high and earthquake time, space accumulation degrees are rising. And the prediction effect R value scores are between 0.4~0.7. We have concluded that, before earthquakes with M_S≥7.0 in the central-northern Qinghai-Xizang (Tibet) block, M_S5.0~6.0 earthquake activity in the whole area increased and accumulated in time and space, but earthquakes with M_S≥7.0 occurred where M_S5.0~6.0 earthquake activity was relatively quiet.展开更多
26 earthquakes with MS ≥5. 0 have been recorded in the northeast margin of the Qinghai- Xizang (Tibet) block since 1980,22 of which were relatively independent of other moderate- strong earthquakes. Research on the i...26 earthquakes with MS ≥5. 0 have been recorded in the northeast margin of the Qinghai- Xizang (Tibet) block since 1980,22 of which were relatively independent of other moderate- strong earthquakes. Research on the increase of small earthquake activity before the 22 moderate-strong earthquakes has indicated that small earthquake activity was enhanced before 17 of the moderate-strong earthquakes. Though the increased seismicity is a common phenomenon in the northeast margin of the Qinghai-Xizang ( Tibet ) block,we have difficulty in predicting the moderate-strong earthquakes by this phenomenon. In order to predict the moderate-strong earthquakes through the increased seismicity of small earthquakes,this paper attempts to propose a new method, which calculates small earthquake frequency through the change of distribution pattern of small earthquakes, based on the characteristics of small earthquake activity in the northeastern Qinghai-Xizang (Tibet) block,and then make primary applications. The result shows that we are able to obtain obvious anomalies in the frequency of small earthquakes before moderate strong earthquakes through the new method,with little spatial range effect on the amplitude of this small earthquake frequency anomaly. We can obtain mid to short-term anomaly indices for moderate-strong earthquakes in the northeast margin of the Qinghai-Xizang (Tibet) block.展开更多
On the basis of Discontinuous Deformation Analysis (DDA), and considering the moderate intrusion of specific block boundaries to different extents, the first-order block motion model is established for the northeaster...On the basis of Discontinuous Deformation Analysis (DDA), and considering the moderate intrusion of specific block boundaries to different extents, the first-order block motion model is established for the northeastern margin of Qinghai-Xizang(Tibet) block and the kinematical model for depicting deformation of small regions as well by using GPS observations of three periods (1991, 1999 and 2001). By simulating, we obtained the motion features of the first-order blocks between the large WWN faults on the sides of the studied region, the distribution features of the principal strain rate field and the inhomogeneous motion features with space-time of the faults in the northern boundary of the Qinghai-Xizang (Tibet) block.展开更多
Through the analysis of the surrounding rock, coal seam burial depth, coal quality and hydrologic geological condition, the methane-bearing property characteristics of the coal reservoir in the Gemudi syncline were el...Through the analysis of the surrounding rock, coal seam burial depth, coal quality and hydrologic geological condition, the methane-bearing property characteristics of the coal reservoir in the Gemudi syncline were elucidated. Most of the wall rock of the coal reservoir is mudstone and silt, which is a favourable enclosing terrane. Burial depth of the main excavating coat seam is moderate. The groundwater activity is thin, and there are absolute groundwater systems between each coal seam, which make poor intercon- nections to accelerate CBM enrichment. In our research, the area coal reservoir meta- morphosis is high, CBM content is high, hole-cranny system development degree is high, and permeability of the great mass of the main coal seam exceeds 0.1×10^-3 μm2, The result demonstrates that the southeast of the Gemudi syncline has the best conditions for prospecting and exploiting CBM.展开更多
Water and heat dynamics in the active layer at a monitoring site in the Tanggula Mountains, located in the permafrost region of the Qinghai-Xizang (Tibet) Plateau (QXP), were studied using the physical-process-bas...Water and heat dynamics in the active layer at a monitoring site in the Tanggula Mountains, located in the permafrost region of the Qinghai-Xizang (Tibet) Plateau (QXP), were studied using the physical-process-based COUPMODEL model, including the interaction between soil temperature and moisture under freeze-thaw cycles. Meteorological, ground temperature and moisture data from different depths within the active layer were used to calibrate and validate the model. The results indicate that the calibrated model satisfactorily simulates the soil temperatures from the top to the bottom of the soil layers as well as the moisture content of the active layer in permafrost regions. The simulated soil heat flux at depths of 0 to 20 cm was consistent with the monitoring data, and the simulations of the radiation balance components were reasonable. Energy consumed for phase change was estimated from the simulated ice content during the freeze/thaw processes from 2007 to 2008. Using this model, the active layer thickness and the energy consumed for phase change were predicted for future climate warming scenarioS. The model predicts an increase of the active layer thickness from the current 330 cm to approximately 350-390 cm as a result of a 1-2℃ warming. However, the effect active layer thickness of more precipitation is limited when the precipitation is increased by 20%-50%. The COUPMODEL provides a useful tool for predicting and understanding the fate of permafrost in the QXP under a warming climate.展开更多
The western Sichuan hydrothermal area is located at the northeastern margin of the eastern syntaxis of the Qinghai-Tibet Plateau, which is also the eastern end of the Mediterranean-Himalayan geothermal activity zone. ...The western Sichuan hydrothermal area is located at the northeastern margin of the eastern syntaxis of the Qinghai-Tibet Plateau, which is also the eastern end of the Mediterranean-Himalayan geothermal activity zone. There are 248 warm or hot springs in this area, and 11 have temperatures beyond the local boiling temperature. Most of these hot springs are distributed along the Jinshajiang, Dege-Xiangcheng, Ganzi-Litang, and Xianshuihe faults, forming a NW-SE hydrothermal belt. A geothermal analysis of this high-temperature hydrothermal area is an important basis for understanding the deep geodynamic process of the eastern syntaxis of the Qinghai-Tibet Plateau. In addition, this study offers an a priori view to utilize geothermal resources, which is important in both scientific research and application. We use gravity, magnetic, seismic, and helium isotope data to analyze the crust-mantle heat flow ratio and deep geothermal structure. The results show that the background terrestrial heat flow descends from southwest to northeast. The crustal heat ratio is not more than 60%. The high temperature hydrothermal active is related to crustal dynamics processes. Along the Batang-Litang-Kangding line, the Moho depth increases eastward, which is consistent with the changing Qc/Qm(crustal/mantle heat flow) ratio trend. The geoid in the hydrothermal zone is 4–6 km higher than the surroundings, forming a local "platform". The NW-SE striking local tensile stress zone and uplift structure in the upper and middle crust corresponds with the surface hydrothermal active zone. There is an average Curie Point Depth(CPD) of 19.5–22.5 km in Batang, Litang, and Kangding. The local shear-wave(S-wave) velocity is relatively low in the middle and lower crust. The S-wave shows a low velocity trap(Vs<3.2 km s.1) at 15–30 km, which is considered a high-temperature partial melting magma, the crustal source of the hydrothermal active zone. We conclude that the hydrothermal system in this area can be divided into Batang-type and Kangding-type, both of which rely on a crustal heating cycle of atmospheric precipitation and surface water along the fracture zone. The heat is derived from the middle and lower crust: groundwater penetrates the deep faults bringing geothermal energy back to the surface and forming high-temperature springs.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.40871024 & 40971014)
文摘Zelongnong Ravine,a branch ravine of Brahmaputra,is an old large glacier debris-flow ravine.Debris-flows with medium and/or small scales occur almost every year;multiple super debris-flows have also broken out in history,and have caused destructive disaster to local residents at the mouth of ravine and blocked Brahmaputra.The huge altitude difference and the steep slope of the Zelongnong Ravine provide predominant energy conditions for the debris-flow.The drainage basin is located in the fast uplifted area,where the complicated geologic structure,the cracked rock,and the frequent earthquake make the rocks experience strong weathering,thus plenty of granular materials are available for the formation of debris-flows.Although this region is located in the rain shadow area,the precipitation is concentrated and most is with high intensity.Also,the strong glacier activity provides water source for debris-flow.According to literature reviews,most debris-flows in the ravine are induced by rainstorms,and their scales are relatively small.However,when the melted water is overlaid,the large scale debris-flows may occur.Parametric calculation such as the flow velocity and the runoff is conducted according to the monitoring data.The result shows that large debris-flows can be aroused when the rainstorm and the melted water are combined well,but the possibility of blocking off Brahmaputra is rare.The occurrence of the super debris-flows is closely related to the intense glacier activity(e.g.,glaciersurge).They often result in destructive disasters and are hard to be prevented and cured by engineering measures,due to the oversized scales.The hazard mitigation measures such as monitoring and prediction are proposed.
文摘An earthquake with magnitude of 5.7 took place on Aug. 18, 2003 in the Nyingchi Region, Tibet. The macroseismic epicenter was located in the unpopniated high mountain area, 13 km south of Zhamo town, Bond County. The seismic intensity in the meizoseismal region was Ⅶ degree. The Ⅶ and Ⅵ areas were 2000 km^2 and 11000 km^2 , respectively. This seismic event is related to the movements of the Lhari fault trending in the NW direction and the ZhamoManiweng fault trending in the NE direction. As a result of this earthquakes, the buildings in the areas were badly damaged.
基金The research was supported by the 10th Five-YearNational Key Technologies R&D Programunder the project number 2001BA601B01-03-04.
文摘In regards to the earthquakes recording M ≥ 5.0 that occurred in middle northern part of the Qinghai-Xizang (Tibet) Block from 1970 - 2003, in this study we describe the temporal and spatial centralization features of the weak earthquakes and the enhancement and anomalous quiescence of their seismic activity before main shocks through 4 parameters, which are basically not correlated: earthquake time centralization degree parameter Ct, earthquake space centralization degree parameter Cd, η value and weak earthquake frequency and so on. On the basis of calculation results, it has been seen that before earthquakes with M ≥ 5.0 took place in the middle northern part of the Qinghal-Xizang (Tibet) Block, the frequency of weak earthquakes often shows ascent and drop, their strength shows an obvious enhancement and the centralization distribution with time and space is evident.
文摘We have studied the seismicity features of M_S≥5.0 earthquakes two years before strong earthquakes with M_S≥7.0 occurred in the central-northern Qinghai-Xizang (Tibet) block since 1920. The results have showed that there is an obvious gap or quiescence of M_S5.0~6.9 earthquakes near epicenters. We have also studied statistical seismicity parameters of M_S5.0~6.9 earthquakes in the same region since 1950. The results have showed that earthquakes with M_S≥7.0 occurred when earthquake frequency is relatively high and earthquake time, space accumulation degrees are rising. And the prediction effect R value scores are between 0.4~0.7. We have concluded that, before earthquakes with M_S≥7.0 in the central-northern Qinghai-Xizang (Tibet) block, M_S5.0~6.0 earthquake activity in the whole area increased and accumulated in time and space, but earthquakes with M_S≥7.0 occurred where M_S5.0~6.0 earthquake activity was relatively quiet.
基金sponsored by Earthquake Scientific Research Program of China (200708038)the National Science and Technological Support Program of the 11th"Five-year Plan"(2006BAC01B03-04-02)
文摘26 earthquakes with MS ≥5. 0 have been recorded in the northeast margin of the Qinghai- Xizang (Tibet) block since 1980,22 of which were relatively independent of other moderate- strong earthquakes. Research on the increase of small earthquake activity before the 22 moderate-strong earthquakes has indicated that small earthquake activity was enhanced before 17 of the moderate-strong earthquakes. Though the increased seismicity is a common phenomenon in the northeast margin of the Qinghai-Xizang ( Tibet ) block,we have difficulty in predicting the moderate-strong earthquakes by this phenomenon. In order to predict the moderate-strong earthquakes through the increased seismicity of small earthquakes,this paper attempts to propose a new method, which calculates small earthquake frequency through the change of distribution pattern of small earthquakes, based on the characteristics of small earthquake activity in the northeastern Qinghai-Xizang (Tibet) block,and then make primary applications. The result shows that we are able to obtain obvious anomalies in the frequency of small earthquakes before moderate strong earthquakes through the new method,with little spatial range effect on the amplitude of this small earthquake frequency anomaly. We can obtain mid to short-term anomaly indices for moderate-strong earthquakes in the northeast margin of the Qinghai-Xizang (Tibet) block.
文摘On the basis of Discontinuous Deformation Analysis (DDA), and considering the moderate intrusion of specific block boundaries to different extents, the first-order block motion model is established for the northeastern margin of Qinghai-Xizang(Tibet) block and the kinematical model for depicting deformation of small regions as well by using GPS observations of three periods (1991, 1999 and 2001). By simulating, we obtained the motion features of the first-order blocks between the large WWN faults on the sides of the studied region, the distribution features of the principal strain rate field and the inhomogeneous motion features with space-time of the faults in the northern boundary of the Qinghai-Xizang (Tibet) block.
基金Supported by the"973"Key Foundation of China(2009CB219605)the National Natural Science Foundation of China(40730422,40802032)the Special of Major National Science and Technology of China(2008ZX05034)
文摘Through the analysis of the surrounding rock, coal seam burial depth, coal quality and hydrologic geological condition, the methane-bearing property characteristics of the coal reservoir in the Gemudi syncline were elucidated. Most of the wall rock of the coal reservoir is mudstone and silt, which is a favourable enclosing terrane. Burial depth of the main excavating coat seam is moderate. The groundwater activity is thin, and there are absolute groundwater systems between each coal seam, which make poor intercon- nections to accelerate CBM enrichment. In our research, the area coal reservoir meta- morphosis is high, CBM content is high, hole-cranny system development degree is high, and permeability of the great mass of the main coal seam exceeds 0.1×10^-3 μm2, The result demonstrates that the southeast of the Gemudi syncline has the best conditions for prospecting and exploiting CBM.
基金financially supported by the National Major Scientific Project of China(Grant No.2013CBA01803)the National Natural Science Foundation of China(Grant Nos.41271081+1 种基金41271086)the Foundation of One Hundred Person Project of the Chinese Academy of Sciences(Grant No.51Y551831)
文摘Water and heat dynamics in the active layer at a monitoring site in the Tanggula Mountains, located in the permafrost region of the Qinghai-Xizang (Tibet) Plateau (QXP), were studied using the physical-process-based COUPMODEL model, including the interaction between soil temperature and moisture under freeze-thaw cycles. Meteorological, ground temperature and moisture data from different depths within the active layer were used to calibrate and validate the model. The results indicate that the calibrated model satisfactorily simulates the soil temperatures from the top to the bottom of the soil layers as well as the moisture content of the active layer in permafrost regions. The simulated soil heat flux at depths of 0 to 20 cm was consistent with the monitoring data, and the simulations of the radiation balance components were reasonable. Energy consumed for phase change was estimated from the simulated ice content during the freeze/thaw processes from 2007 to 2008. Using this model, the active layer thickness and the energy consumed for phase change were predicted for future climate warming scenarioS. The model predicts an increase of the active layer thickness from the current 330 cm to approximately 350-390 cm as a result of a 1-2℃ warming. However, the effect active layer thickness of more precipitation is limited when the precipitation is increased by 20%-50%. The COUPMODEL provides a useful tool for predicting and understanding the fate of permafrost in the QXP under a warming climate.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41574074, 41174085, 41430319)the Innovation Team Project of Chinese Academy of Sciences (Grant No. KZZD-EW-TZ-19)the Strategic Pilot Technology of Chinese Academy of Sciences (Grant No. XDA1103010102)
文摘The western Sichuan hydrothermal area is located at the northeastern margin of the eastern syntaxis of the Qinghai-Tibet Plateau, which is also the eastern end of the Mediterranean-Himalayan geothermal activity zone. There are 248 warm or hot springs in this area, and 11 have temperatures beyond the local boiling temperature. Most of these hot springs are distributed along the Jinshajiang, Dege-Xiangcheng, Ganzi-Litang, and Xianshuihe faults, forming a NW-SE hydrothermal belt. A geothermal analysis of this high-temperature hydrothermal area is an important basis for understanding the deep geodynamic process of the eastern syntaxis of the Qinghai-Tibet Plateau. In addition, this study offers an a priori view to utilize geothermal resources, which is important in both scientific research and application. We use gravity, magnetic, seismic, and helium isotope data to analyze the crust-mantle heat flow ratio and deep geothermal structure. The results show that the background terrestrial heat flow descends from southwest to northeast. The crustal heat ratio is not more than 60%. The high temperature hydrothermal active is related to crustal dynamics processes. Along the Batang-Litang-Kangding line, the Moho depth increases eastward, which is consistent with the changing Qc/Qm(crustal/mantle heat flow) ratio trend. The geoid in the hydrothermal zone is 4–6 km higher than the surroundings, forming a local "platform". The NW-SE striking local tensile stress zone and uplift structure in the upper and middle crust corresponds with the surface hydrothermal active zone. There is an average Curie Point Depth(CPD) of 19.5–22.5 km in Batang, Litang, and Kangding. The local shear-wave(S-wave) velocity is relatively low in the middle and lower crust. The S-wave shows a low velocity trap(Vs<3.2 km s.1) at 15–30 km, which is considered a high-temperature partial melting magma, the crustal source of the hydrothermal active zone. We conclude that the hydrothermal system in this area can be divided into Batang-type and Kangding-type, both of which rely on a crustal heating cycle of atmospheric precipitation and surface water along the fracture zone. The heat is derived from the middle and lower crust: groundwater penetrates the deep faults bringing geothermal energy back to the surface and forming high-temperature springs.