Peat sediments and peatland evolution process offer abundant clues into the history of vegetation and climate changes.In order to reconstruct Holocene peatland, vegetation and climate changes on eastern Tibetan Platea...Peat sediments and peatland evolution process offer abundant clues into the history of vegetation and climate changes.In order to reconstruct Holocene peatland, vegetation and climate changes on eastern Tibetan Plateau, we conducted analyses of fossil pollen, loss-on-ignition, and carbon accumulation rate on one peat core from Zoige Basin. Our results show local peatland initiated at 10.3 ka, thrived in the early-mid Holocene, and then began to degrade. Throughout the Holocene, Zoige Basin was dominated by alpine meadow. Coniferous forest on montane regions expanded for several times during 10.5–4.6ka, and then dramatically retreated. Results of peatland property, principal component analysis on fossil pollen suggested the climate maintained warm/wet during 10–5.5 ka, and became relatively cold/dry in the late Holocene. Rapid degradation of peatland, retreat of coniferous forest and climatic drought/cooling occurred at 10.2–10, 9.7–9.5, 8.7–8.5, 7.7–7.4, 6.4–6, 5.5–5.2,4.8–4.5, 4–3.6, 3.1–2.7, 1.4–1.2 and 0.8–0.6 ka. The long-term variations of Holocene climate and vegetation on eastern Tibetan Plateau could be attributed to changes in insolation-driven temperature and Asian Summer Monsoon intensity, while those rapid centennial changes were probably triggered by abrupt monsoon failures and temperature anomalies in the high northern latitudes.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2016YFA0600501)the National Natural Science Foundation of China(Grant Nos.41471169,41330105,41102221,41690113&41401228)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB03030103)
文摘Peat sediments and peatland evolution process offer abundant clues into the history of vegetation and climate changes.In order to reconstruct Holocene peatland, vegetation and climate changes on eastern Tibetan Plateau, we conducted analyses of fossil pollen, loss-on-ignition, and carbon accumulation rate on one peat core from Zoige Basin. Our results show local peatland initiated at 10.3 ka, thrived in the early-mid Holocene, and then began to degrade. Throughout the Holocene, Zoige Basin was dominated by alpine meadow. Coniferous forest on montane regions expanded for several times during 10.5–4.6ka, and then dramatically retreated. Results of peatland property, principal component analysis on fossil pollen suggested the climate maintained warm/wet during 10–5.5 ka, and became relatively cold/dry in the late Holocene. Rapid degradation of peatland, retreat of coniferous forest and climatic drought/cooling occurred at 10.2–10, 9.7–9.5, 8.7–8.5, 7.7–7.4, 6.4–6, 5.5–5.2,4.8–4.5, 4–3.6, 3.1–2.7, 1.4–1.2 and 0.8–0.6 ka. The long-term variations of Holocene climate and vegetation on eastern Tibetan Plateau could be attributed to changes in insolation-driven temperature and Asian Summer Monsoon intensity, while those rapid centennial changes were probably triggered by abrupt monsoon failures and temperature anomalies in the high northern latitudes.