[Objective] The study aimed at exploring the relationship among the agronomic characters of B. juncea in western China, in order to provide scientific basis for the breeding of B. juncea in western China. [Method] 39 ...[Objective] The study aimed at exploring the relationship among the agronomic characters of B. juncea in western China, in order to provide scientific basis for the breeding of B. juncea in western China. [Method] 39 B. juncea materials from western China were used for the canonical correlation analysis, and canonical correlations between each pair of the four ecological character (containing 18 variables) were verified, including yield characters (5 variables), caulis characters (6 variables), branch characters (3 variables) and pod characters (3 variables). [Result] Yield per plant of B. juncea in western China suffered a tremendous influence from effective pod number per plant while was not significantly affected by the total pod number per plant, seed number per pod and 1 000-seed weight; the most important character related with the yield character of B. juncea in western China was caulis character, followed by the branch character and pod character; yield characters, caulis characters, branch characters and pod characters of B. juncea in western China were closely correlated. [Conclusion] In order to improve the yield characters of B. juncea in western China, caulis characters should be focused on, followed by branch characters and pod characters; rapeseed varieties with high performance in total pod number per plant and effective pod number per plant should be chosen through the perspectives of effective branch number, plant height, pod number of main inflorescence, fruit stalk number of main inflorescence and other traits, while rapeseed varieties with high performance in seed number per pod and 1 000-seed weight should be chosen through the perspectives of beak length and other traits.展开更多
The oblique transfer zone in the Fushan Sag, a syndepositional dome sandwiched between the Bailian and Huangtong sub-sags, has been the most important exploration target. The major oil observation occurs in the E_2l_1...The oblique transfer zone in the Fushan Sag, a syndepositional dome sandwiched between the Bailian and Huangtong sub-sags, has been the most important exploration target. The major oil observation occurs in the E_2l_1^(L+M) and the E_2l_3~U. 46 oil and rock samples reveal that the oil in the transfer zone is mostly contributed by the Bailian sub-sag, though the source rock conditions, hydrocarbon generation and expulsion histories of the Bailian and Huangtong sub-sags are similar. The E_2l_3~U oil, characterized by high maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, shows a close genetic affinity with the E_2l_3~b source rocks, while the E_2l_1^(L+M) oil, characterized by lower maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, is suggested to be derived from the E_2l_(1+2)~b source rocks. The homogenization temperatures of aqueous fluid inclusions, taking the burial history of the reservoirs into account, reflect that the oil charge mainly occurred from mid-Miocene to Pliocene in the oblique transfer zone. The oil transporting passages include connected sand bodies, unconformities and faults in the Fushan Sag. Of these, the faults are the most complicated and significant. The faults differ sharply in the west area, the east area and the oblique transfer zone, resulting in different influence on the oil migration and accumulation. During the main hydrocarbon charge stage, the faults in the west area are characterized by bad vertical sealing and spatially dense distribution. As a result, the oil generated by the Huangtong source rocks is mostly lost along the faults during the vertical migration in the west area. This can be the mechanism proposed to explain the little contribution of the Huangtong source rocks to the oil in the oblique transfer zone. Eventually, an oil migration and accumulation model is built in the oblique transfer zone, which may provide theoretical and practical guides for the oil exploration.展开更多
基金Supported by National Natural Science Foundation(30760122)National High-Tech Research and Development Program(863Program)(2009AA101105)+1 种基金Faculty Construction of 211 Project(SZTD-211-02)Project of Introducing Advanced Agricultural Science and Technology of Ministry of Agriculture(948Program)(2010-Z54)~~
文摘[Objective] The study aimed at exploring the relationship among the agronomic characters of B. juncea in western China, in order to provide scientific basis for the breeding of B. juncea in western China. [Method] 39 B. juncea materials from western China were used for the canonical correlation analysis, and canonical correlations between each pair of the four ecological character (containing 18 variables) were verified, including yield characters (5 variables), caulis characters (6 variables), branch characters (3 variables) and pod characters (3 variables). [Result] Yield per plant of B. juncea in western China suffered a tremendous influence from effective pod number per plant while was not significantly affected by the total pod number per plant, seed number per pod and 1 000-seed weight; the most important character related with the yield character of B. juncea in western China was caulis character, followed by the branch character and pod character; yield characters, caulis characters, branch characters and pod characters of B. juncea in western China were closely correlated. [Conclusion] In order to improve the yield characters of B. juncea in western China, caulis characters should be focused on, followed by branch characters and pod characters; rapeseed varieties with high performance in total pod number per plant and effective pod number per plant should be chosen through the perspectives of effective branch number, plant height, pod number of main inflorescence, fruit stalk number of main inflorescence and other traits, while rapeseed varieties with high performance in seed number per pod and 1 000-seed weight should be chosen through the perspectives of beak length and other traits.
基金Project(41272122)supported by the National Natural Science Foundation of China
文摘The oblique transfer zone in the Fushan Sag, a syndepositional dome sandwiched between the Bailian and Huangtong sub-sags, has been the most important exploration target. The major oil observation occurs in the E_2l_1^(L+M) and the E_2l_3~U. 46 oil and rock samples reveal that the oil in the transfer zone is mostly contributed by the Bailian sub-sag, though the source rock conditions, hydrocarbon generation and expulsion histories of the Bailian and Huangtong sub-sags are similar. The E_2l_3~U oil, characterized by high maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, shows a close genetic affinity with the E_2l_3~b source rocks, while the E_2l_1^(L+M) oil, characterized by lower maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, is suggested to be derived from the E_2l_(1+2)~b source rocks. The homogenization temperatures of aqueous fluid inclusions, taking the burial history of the reservoirs into account, reflect that the oil charge mainly occurred from mid-Miocene to Pliocene in the oblique transfer zone. The oil transporting passages include connected sand bodies, unconformities and faults in the Fushan Sag. Of these, the faults are the most complicated and significant. The faults differ sharply in the west area, the east area and the oblique transfer zone, resulting in different influence on the oil migration and accumulation. During the main hydrocarbon charge stage, the faults in the west area are characterized by bad vertical sealing and spatially dense distribution. As a result, the oil generated by the Huangtong source rocks is mostly lost along the faults during the vertical migration in the west area. This can be the mechanism proposed to explain the little contribution of the Huangtong source rocks to the oil in the oblique transfer zone. Eventually, an oil migration and accumulation model is built in the oblique transfer zone, which may provide theoretical and practical guides for the oil exploration.