The lofty and extensive Tibetan Plateau has significant mass elevation effect(MEE). In recent years, a great effort has been made to quantify MEE, with the recognition of intra-mountain basal elevation(MBE) as the mai...The lofty and extensive Tibetan Plateau has significant mass elevation effect(MEE). In recent years, a great effort has been made to quantify MEE, with the recognition of intra-mountain basal elevation(MBE) as the main determinant of MEE. In this study, we improved the method of estimating MEE with MODIS and NECP data, by refining temperature laps rate, and dividing MBE plots, and then analyzed the spatio-temporal variation of MEE in the Plateau. The main conclusions include: 1) the highest average annual MEE of the plateau is as high as 11.5488°C in the southwest of the plateau, where exists a high-MEE core and MEE takes on a trend of decreasing from the core to the surrounding areas; 2) in the interior of the plateau, the maximum monthly MEE is 14.1108°C in the highest MBE plot(4934 m) in August; while the minimum monthly MEE appeared primarily in January and February; 3) in the peripheral areas of the plateau, annual mean MEE is relatively low, mostly between 3.0068°C–5.1972°C, where monthly MEE is high in January and December and low in June and July, completely different from the MEE time-series variation in the internal parts of the plateau.展开更多
The Datong fault belt is a NE trending fault in the northern Qinghai-Xizang (Tibet) Plateau and controls the boundary of the Xining Basin and Datong Basin. It consists of the Maziying- Miaogou (F1) fault and the L...The Datong fault belt is a NE trending fault in the northern Qinghai-Xizang (Tibet) Plateau and controls the boundary of the Xining Basin and Datong Basin. It consists of the Maziying- Miaogou (F1) fault and the Laoye Mountain-Nanmenxia fault (F2). There is obvious displacement in vertical direction along the belt. The field investigation results show that this belt has long-term activity. There are several meters long crushed zones and veins along the fault side in the basement rock. On the fault section, the Cambria system thrusts over the red- brick-colored Quaternary Period gravel, and there is a fault gouge of several centimeters thick developed on the fault plane. The fault gouge date (ESR) on the fault plane is 610 ± 61ka. The covering deluvial loess is not dislocated, and the OSL result is 14.6 ± 1.5ka. So it can be concluded that the fault belt was active in the middle Pleistocene, but inactive in the late Pleistocene according to the age data and geomorphologic features. Interior formations of the Datong basin features fold with the major axis orienting northwest. According to the relation of fault and fold deformation, Datong fault is a trausversal tear, which is due to uneven compression of the folds in different parts and NNE trending regional compressive stress. It is common among the NE trending faults in the northeast of Qinghai-Xizang (Tibet) Plateau. These NE trending faults aren't large, and most are located in the active plate. They are all nearly vertical to the axis of the folds and compressive basins.展开更多
Many well-preserved silicified megalodontids found from the Jiapila Formation of the Upper Triassic in western China show great variations in the amorphous teeth and the massive hinge plate,making the internal molds v...Many well-preserved silicified megalodontids found from the Jiapila Formation of the Upper Triassic in western China show great variations in the amorphous teeth and the massive hinge plate,making the internal molds vary greatly in size and shape.Thus,the internal molds of megalodontids do not always provide reliable taxonomic characters.As a result,about 3/4 of the 132 species and 6 of 9 genera of Triassic Megalodontidae erected on the basis of internal molds have to be revised.The revised definitions of genera Neomegalodon,Triadomegalodon,and Conchodon are given in this paper.展开更多
基金supported by the Natural Science Foundation of China (Grant Nos.41401111 and 41601091)
文摘The lofty and extensive Tibetan Plateau has significant mass elevation effect(MEE). In recent years, a great effort has been made to quantify MEE, with the recognition of intra-mountain basal elevation(MBE) as the main determinant of MEE. In this study, we improved the method of estimating MEE with MODIS and NECP data, by refining temperature laps rate, and dividing MBE plots, and then analyzed the spatio-temporal variation of MEE in the Plateau. The main conclusions include: 1) the highest average annual MEE of the plateau is as high as 11.5488°C in the southwest of the plateau, where exists a high-MEE core and MEE takes on a trend of decreasing from the core to the surrounding areas; 2) in the interior of the plateau, the maximum monthly MEE is 14.1108°C in the highest MBE plot(4934 m) in August; while the minimum monthly MEE appeared primarily in January and February; 3) in the peripheral areas of the plateau, annual mean MEE is relatively low, mostly between 3.0068°C–5.1972°C, where monthly MEE is high in January and December and low in June and July, completely different from the MEE time-series variation in the internal parts of the plateau.
基金the Programof "City Active Fault Experimental Detection"(20042238)National Development and Reform Commission of People's Republic of China and the Earthquake Science Foundation of Qinghai Province (2006A03),China
文摘The Datong fault belt is a NE trending fault in the northern Qinghai-Xizang (Tibet) Plateau and controls the boundary of the Xining Basin and Datong Basin. It consists of the Maziying- Miaogou (F1) fault and the Laoye Mountain-Nanmenxia fault (F2). There is obvious displacement in vertical direction along the belt. The field investigation results show that this belt has long-term activity. There are several meters long crushed zones and veins along the fault side in the basement rock. On the fault section, the Cambria system thrusts over the red- brick-colored Quaternary Period gravel, and there is a fault gouge of several centimeters thick developed on the fault plane. The fault gouge date (ESR) on the fault plane is 610 ± 61ka. The covering deluvial loess is not dislocated, and the OSL result is 14.6 ± 1.5ka. So it can be concluded that the fault belt was active in the middle Pleistocene, but inactive in the late Pleistocene according to the age data and geomorphologic features. Interior formations of the Datong basin features fold with the major axis orienting northwest. According to the relation of fault and fold deformation, Datong fault is a trausversal tear, which is due to uneven compression of the folds in different parts and NNE trending regional compressive stress. It is common among the NE trending faults in the northeast of Qinghai-Xizang (Tibet) Plateau. These NE trending faults aren't large, and most are located in the active plate. They are all nearly vertical to the axis of the folds and compressive basins.
基金supported by National Natural Science Foundation of China (Gant No. 41172025)China Geological Survey Project (Grant No. 1212011120116)
文摘Many well-preserved silicified megalodontids found from the Jiapila Formation of the Upper Triassic in western China show great variations in the amorphous teeth and the massive hinge plate,making the internal molds vary greatly in size and shape.Thus,the internal molds of megalodontids do not always provide reliable taxonomic characters.As a result,about 3/4 of the 132 species and 6 of 9 genera of Triassic Megalodontidae erected on the basis of internal molds have to be revised.The revised definitions of genera Neomegalodon,Triadomegalodon,and Conchodon are given in this paper.