期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
平遥西高灌自动化控制系统设计
1
作者 任学强 闫娟娟 《山西水利》 2011年第5期57-58,共2页
针对平遥县中都乡西高灌运行中存在的问题,指出通过计算机、无线通讯、传感器、自动化控制等技术,围绕监测、控制、显示和管理四方面功能进行自动化控制系统设计,为县城内中、小型泵站自动化管理提供典范。
关键词 西高灌 自动化控制 平遥县
下载PDF
Variable hydrological effects of herbs and shrubs in the arid northeastern Qinghai-Tibet Plateau,China 被引量:1
2
作者 LIU Ya-bin ZHANG Ying +5 位作者 FU Jiang-tao YU Dong-mei HU Xia-song LI Xi-lai QI Zhao-xin LI Shu-xia 《Journal of Mountain Science》 SCIE CSCD 2018年第7期1532-1545,共14页
This study aims to assess the hydrological effects of four herbs and four shrubs planted in a selfestablished test area in Xining Basin of northeastern Qinghai-Tibet Plateau, China. The RainfallIntercepting Capability... This study aims to assess the hydrological effects of four herbs and four shrubs planted in a selfestablished test area in Xining Basin of northeastern Qinghai-Tibet Plateau, China. The RainfallIntercepting Capability(RIC) of the herbs and shrubs was evaluated in rainfall interception experiment at the end of the third, fourth and fifth month of the growth period in 2007. The leaf transpiration rate and the effects of roots on promoting soil moisture evaporation in these plants were also assessed in transpiration experiment and root-soil composite system evaporation experiment in the five month's growth period. It is found that the RIC of the fourstudied herbs follows the order of E. repens, E. dahuricus, A. trachycaulum and L. secalinus; the RIC of the four shrubs follows the order of A. canescens, Z. xanthoxylon, C. korshinskii and N. tangutorum. The RIC of all the herbs is related linearly to their mean height and canopy area(R^2 ≥ 0.9160). The RIC of all the shrubs bears a logarithmic relationship with their mean height(R^2 ≥ 0.9164), but a linear one with their canopy area(R^2 ≥ 0.9356). Moreover, different species show different transpiration rates. Of the four herbs, E. repens has the highest transpiration rate of 1.07 mg/(m^2·s), and of the four shrubs, A. canescens has the highest transpiration rate(0.74 mg/(m^2·s)). The roots of all the herbs and shrubs can promote soil moisture evaporation. Of the four herbs, the evaporation rate of E. repens root-soil composite system is the highest(2.14%), and of the four shrubs,the root-soil composite system of A. canescens has the highest evaporation rate(1.41%). The evaporation rate of the root-soil composite system of E. dahuricus and Z. xanthoxylon bears a second-power linear relationship with evaporation time(R^2 ≥ 0.9924). The moisture content of all the eight root-soil composite systems decreases exponentially with evaporation time(R^2 ≥ 0.8434). The evaporation rate and moisture content of all the plants' root-soil composite systems increases logarithmically(R^2 ≥ 0.9606) and linearly(R^2 ≥ 0.9777) with root volume density. The findings of this study indicate that among the four herbs and four shrubs, E. repens and A. canescens possess the most effective hydrological effects in reducing the soil erosion and shallow landslide in this region. 展开更多
关键词 Plant hydrological effects Rainfall interception capacity Root-soft composite system Transpiration rate Moisture evaporation rate Qinghai-Tibet Plateau
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部