To reduce the energy consumption of the LTE-A system,a distributed energy-saving mechanism based on Co MP(Co MPDESM) is proposed to solve the inadequate coverage problem under the dormant cells.First,the network is di...To reduce the energy consumption of the LTE-A system,a distributed energy-saving mechanism based on Co MP(Co MPDESM) is proposed to solve the inadequate coverage problem under the dormant cells.First,the network is divided into clusters based on the equivalent cell principle.Then,we transfer global optimization into a group of subproblems.Second,a joint processing-based cooperative cell selection model is constructed to determine cooperative cells and dormant cells.Third,the compensative cells with a determined threshold are selected to control users' access.Finally,a simulation is implemented in Matlab.Results show that the energy-saving rate can reach 36.4% and that the mechanism meets the network coverage requirement.Thus,joint processing can be effectively applied in an energy saving mechanism and used to improve the network performance of edge users without increasing transmission power.展开更多
Small cluster and periodic surface models with low coverages of intermediates are frequently employed to investigate reaction mechanisms and identify active sites on nanoparticles(NPs)in density functional theory(DFT)...Small cluster and periodic surface models with low coverages of intermediates are frequently employed to investigate reaction mechanisms and identify active sites on nanoparticles(NPs)in density functional theory(DFT)studies.However,diverse active sites on NPs cannot be sufficiently represented by these simple models,hampering the in-depth insights into the catalytic behavior of NPs.This paper describes the crucial roles of both model and coverage effect on understanding the nature of active sites for CO_(2)reduction over Au and Pd NPs using DFT calculations.Terrace sites exhibit higher selectivity for CO than edge sites on Au NPs,which is opposite to the results on Au periodic surfaces.This contradiction reveals the computational model effect on clarifying active site properties.For Pd catalysts,the coverage effect is more significant.On bare Pd NPs and periodic surfaces,the selectivity for CO at edge sites is nearly identical to that at terrace sites,whereas edge sites display higher selectivity for CO than terrace sites in the case of high CO coverages.Through considering the more realistic models and the coverage effect,we successfully describe the size effect of Au and Pd NPs on CO selectivity.More importantly,this work reminds us of the necessity of reasonable models in DFT calculations.展开更多
基金partially supported by the National Natural Science Foundation of China(61271187)the "863" Project (2014AA01A701)+2 种基金the Provincial Natural Science Foundation of China(20122BAB211039)the PAPD fundthe CICAEET fund
文摘To reduce the energy consumption of the LTE-A system,a distributed energy-saving mechanism based on Co MP(Co MPDESM) is proposed to solve the inadequate coverage problem under the dormant cells.First,the network is divided into clusters based on the equivalent cell principle.Then,we transfer global optimization into a group of subproblems.Second,a joint processing-based cooperative cell selection model is constructed to determine cooperative cells and dormant cells.Third,the compensative cells with a determined threshold are selected to control users' access.Finally,a simulation is implemented in Matlab.Results show that the energy-saving rate can reach 36.4% and that the mechanism meets the network coverage requirement.Thus,joint processing can be effectively applied in an energy saving mechanism and used to improve the network performance of edge users without increasing transmission power.
文摘Small cluster and periodic surface models with low coverages of intermediates are frequently employed to investigate reaction mechanisms and identify active sites on nanoparticles(NPs)in density functional theory(DFT)studies.However,diverse active sites on NPs cannot be sufficiently represented by these simple models,hampering the in-depth insights into the catalytic behavior of NPs.This paper describes the crucial roles of both model and coverage effect on understanding the nature of active sites for CO_(2)reduction over Au and Pd NPs using DFT calculations.Terrace sites exhibit higher selectivity for CO than edge sites on Au NPs,which is opposite to the results on Au periodic surfaces.This contradiction reveals the computational model effect on clarifying active site properties.For Pd catalysts,the coverage effect is more significant.On bare Pd NPs and periodic surfaces,the selectivity for CO at edge sites is nearly identical to that at terrace sites,whereas edge sites display higher selectivity for CO than terrace sites in the case of high CO coverages.Through considering the more realistic models and the coverage effect,we successfully describe the size effect of Au and Pd NPs on CO selectivity.More importantly,this work reminds us of the necessity of reasonable models in DFT calculations.