-
题名关于覆盖同余式组
被引量:3
- 1
-
-
作者
及万会
-
机构
宁夏吴忠师范学校
-
出处
《贵州师范大学学报(自然科学版)》
CAS
2000年第4期72-75,共4页
-
文摘
用初等方法证明了 :对任给n1>1整数 。
-
关键词
覆盖同余式组
归入集
包含集
数论
-
Keywords
system of old (even) covering congruence expression
enter set
contain set
-
分类号
O156.1
[理学—基础数学]
-
-
题名关于覆盖同余式的一个应用
被引量:2
- 2
-
-
作者
管训贵
-
机构
泰州学院数理学院
-
出处
《周口师范学院学报》
CAS
2016年第5期1-6,共6页
-
基金
江苏省教育科学"十二五"规划课题(No.D201301083)
泰州学院教授基金项目(No.TZXY2015JBJJ002)
云南省教育厅科研课题(No.2014Y462)
-
文摘
建立了一组覆盖同余式并通过对非负整数n进行分类等方法,给出了使2kp^n+1对每一个非负整数n均为合数的k值,这里素数p=7,13及p≡5(mod6).
-
关键词
覆盖同余式
合数
剩余
模
-
Keywords
covering systems of congruences
composite number
residue
moduli
-
分类号
O156.1
[理学—基础数学]
-
-
题名一类覆盖同余式组的一个应用
被引量:4
- 3
-
-
作者
侯炮明
王炳安
-
机构
大连大学数学系
-
出处
《辽宁工程技术大学学报(自然科学版)》
CAS
1999年第1期93-97,共5页
-
文摘
建立了一类覆盖同余式组并通过对非负整数n进行分类等方法,给出使k·2n-1对每一非负整n均为合数的K值的计算。最后列出了21个k值,均能使k·2n+1对任一非负整数成为合数。
-
关键词
合数
同余式
覆盖同余式组
K值
-
Keywords
composite number, congruence
covering congruence group
-
分类号
O156.1
[理学—基础数学]
-
-
题名覆盖同余式应用的一点注记
被引量:1
- 4
-
-
作者
房婷
管训贵
-
机构
泰州学院数理学院
-
出处
《萍乡学院学报》
2017年第3期10-13,共4页
-
基金
江苏省教育科学"十二五"规划课题(D201301083)
泰州学院教授基金项目(TZXY2016JBJJ001)
云南省教育厅科研课题(No.2014Y462)
-
文摘
建立了一组覆盖同余式并通过对非负整数n进行分类等方法,给出了使2kp^n+1对每一个非负整数n均为合数的k值,这里素数p=19,31,37,43,61,67,73,79,97。
-
关键词
覆盖同余式
合数
剩余
模
-
Keywords
covering systems of congruence
composite number
residue
module
-
分类号
O156.1
[理学—基础数学]
-
-
题名覆盖同余式组及其应用
- 5
-
-
作者
华程
-
机构
泰州学院数理学院
-
出处
《河北北方学院学报(自然科学版)》
2020年第1期1-8,共8页
-
基金
江苏省自然科学基金项目(BK20171318)
泰州学院教育改革研究课题(2018JGB05)。
-
文摘
目的通过对非负整数进行分类,建立一组覆盖同余式,给出使2kpn+1对每一个非负整数n均为合数的k值,这里p为素数。方法运用中国剩余定理。结果当素数p=103、109、127、139、151、157、163、181、193、199时,分别存在k值等于2269+23205t、7843+15015t、356926+623805t、21907+31395t、3202+25935t、20806+23205t、23089+25935t、34717+42315t、66979+132405t、1633+15015t(这里t是任意非负整数),使得2kpn+1对每一个非负整数n均为合数。结论所获命题提供了研究此类问题的一个思路。
-
关键词
覆盖同余式
合数
模
中国剩余定理
-
Keywords
covering congruence group
composite number
module
Chinese remainder theorem
-
分类号
O156.1
[理学—基础数学]
-
-
题名强伪素数、覆盖同余式组以及广义bent函数
被引量:1
- 6
-
-
作者
姜宇鹏
邓映蒲
-
机构
中国科学院数学与系统科学研究院
-
出处
《中国科学:数学》
CSCD
北大核心
2015年第4期321-330,共10页
-
基金
国家自然科学基金(批准号:11071285和61121062)
国家重点基础研究发展计划(批准号:2011CB302401)资助项目
-
文摘
本文考虑三个问题:强伪素数的计算、覆盖同余式组和广义bent函数.本文的创新点包括:(1)编程证明3 825 123 056 546 413 051是通过前9个素数为基的Miller-Rabin测试的最小合数;(2)证明Kim的猜想,即任意代数数域上的恰好覆盖同余式组必有模理想重复出现;(3)证明两类广义bent函数不存在.
-
关键词
强伪素数
中国剩余定理
覆盖同余式组
广义BENT函数
域下降方法
-
Keywords
strong pseudoprime
Chinese remainder theorem
covering systems of congruences
generalized bent functions
field descent method
-
分类号
O174
[理学—基础数学]
O156
[理学—基础数学]
-