Lanthanum alginate bead is a new, highly active adsorbent. In the present study, we investigated its ad- sorption performance and its adsorption mechanism. The adsorption isotherm for fluoride onto lanthanum alginate ...Lanthanum alginate bead is a new, highly active adsorbent. In the present study, we investigated its ad- sorption performance and its adsorption mechanism. The adsorption isotherm for fluoride onto lanthanum alginate b ead fits the Langmuir model well, and the maximum adsorption capacity is 197.2 mg·g-1. X-ray diffraction shows the amorphous nature of lanthanum alginate bead, which allows for better accessibility to fluoride and thus better activity. Infrared spectra of lanthanum alginate bead before and after adsorption confirm its stable skeletal structure. Scanning electron microscopy shows that the dense surface structure of the adsorbent appear cracks after adsorption. T he adsorption mechanism of lanthanum alginate bead is considered as an ion exchange between F- and Cl- or OH-, as verified from the adsorbent and the solution by pH effect, energy dispersive X-ray, and ion chromatography.展开更多
The tension property of aluminum-alloy sheet with different microstructures is measured, and the surface and tension fracture morphology of tension sample with and without orange peel are observed by using scanning el...The tension property of aluminum-alloy sheet with different microstructures is measured, and the surface and tension fracture morphology of tension sample with and without orange peel are observed by using scanning electron microscope (SEM). Surface roughness and nano hardness of tension sample are measured. The results show that the average elongation of the samples with orange peel is lower than that without orange peel ; especially the r value of per- pendicular to the rolling direction is much lower than that without orange peel. The tension surface of the orange peel samples is very rough; various parameters of surface roughness are higher. Under the observation of SEM, a wider slid- ing band with a micro crack on the surface of orange peel sample can be found. The various parameters of surface rough- ness without orange peel sample are near to zero, the sliding band is narrow and without micro cracks. The dimple width in tensile fracture of orange peel sample is larger than that without orange peel sample, but shear lip is narrower. The nano hardness testing results show that samples with orange peel behave high elastic modulus, high hardness, and high maximum load, but low plastic deformation depth. These mentioned features can completely describe surface and frac- ture morphology of tension samt31es with oranze peel.展开更多
The spatial variation and diurnal fluctuation of sea surface wind over the Qiongzhou Strait were described using verified datasets from automatic weather stations on board a ferry, buoys, and on the coast. Results are...The spatial variation and diurnal fluctuation of sea surface wind over the Qiongzhou Strait were described using verified datasets from automatic weather stations on board a ferry, buoys, and on the coast. Results are as follows: (1) On average, sea surface wind speed is 34 m/s larger over the Qiongzhou Strait than in the coastal area. Sea surface wind speeds of 8.0 rrds or above (on Beaufort scale five) in the coastal area are associated with speeds 5-6 m/s greater over the surface of the Qiongzhou Strait. (2) Gust coefficients for the Qiongzhou Strait decrease along with increasing wind speeds. When coastal wind speed is less than scale five, the average gust coefficient over the sea surface is between 1.4 and 1.5; when wind speed is equal to scale five or above, the average gust coefficient is about 1.35. (3) In autumn and winter, the diurnal differences of average wind speed and wind consistency over the strait are less than those in the coastal area; when wind speed is 10.8 m/s (scale six) or above, the diurnal difference of average wind speed decreases while wind consistency increases for both the strait and the coast.展开更多
Retinal dystrophies are genetically determined diseases, implying the loss of function of the retina with a wide phenotypic and genotypic variability. There are very few phenotypic, genotypic and epidemiological data ...Retinal dystrophies are genetically determined diseases, implying the loss of function of the retina with a wide phenotypic and genotypic variability. There are very few phenotypic, genotypic and epidemiological data on retinal dystrophies in Latin America. The Objective of this study is to describe the epidemioiogical and clinical characteristics of hereditary retinal and choroidal diseases, in retina practices in Panama. A descriptive study, from 2012 to 2013, was performed in the main retina practices in Panama. All detected patients were given a free appointment to gather their phenotypic characteristics and pedigrees. An incidence of five new cases per year, and an accumulated incidence of 5.35 patients per I0,000 was calculated for the public hospitals. A frequency of 2.7 cases per 1,000 patients was observed in the main retina practices, where 69% had rod-cone dystrophies, 14.3% cone-rod dystrophies, 7.1% Stargardt disease, 4.8% Stargardt-like macular dystrophy and two patients presented other dystrophies. Blindness was the main family antecedent (45.2%). Retinal pigment was present in 59% and strabismus in 21.4% of the patients. Rod-cone and cone-rod dystrophies had similar geographic distribution and the autosomal recessive inheritance pattern was the most frequently observed. This study gives the first phenotypic data of retinal dystrophies in Panama to orient clinicians for a better diagnosis and phenotyping-genotyping correlation for retinal dystrophies in Central America.展开更多
A fully flattened carbon nanotube (FNT), a graphene nanoribbon (GNR) analogue, provides a hollow space at edges for endohedral doping. Due to the unique shape of the hollow space of FNTs, novel types of low-dimens...A fully flattened carbon nanotube (FNT), a graphene nanoribbon (GNR) analogue, provides a hollow space at edges for endohedral doping. Due to the unique shape of the hollow space of FNTs, novel types of low-dimensional arrangements of atoms and molecules can be obtained through endohedral doping into FNTs, which provides a new type of nanopeapods. FNT-based nanopeapods have been synthesized through endohedral doping of C60, and their structural characterization with transmission electron microscopy (TEM) performed. The doping of C60 into the inner hollow space of FNTs has been carried out via the gas-phase filling method, where open-ended FNTs are sealed in a glass ampoule and heated at 723-773 K for two days. TEM observations show that most of the encapsulated C60 molecules align as single molecular chains along the edges of FNTs and that some of the C60 forms two-dimensional close-packed structures inside FNTs.展开更多
基金Supported by the Major National Science and Technology Special Project on Treatment and Control of Water Pollution(2009ZX07425-006)State Key Laboratory of Environmental Simulation and Pollution Control (09K04ESPCT)
文摘Lanthanum alginate bead is a new, highly active adsorbent. In the present study, we investigated its ad- sorption performance and its adsorption mechanism. The adsorption isotherm for fluoride onto lanthanum alginate b ead fits the Langmuir model well, and the maximum adsorption capacity is 197.2 mg·g-1. X-ray diffraction shows the amorphous nature of lanthanum alginate bead, which allows for better accessibility to fluoride and thus better activity. Infrared spectra of lanthanum alginate bead before and after adsorption confirm its stable skeletal structure. Scanning electron microscopy shows that the dense surface structure of the adsorbent appear cracks after adsorption. T he adsorption mechanism of lanthanum alginate bead is considered as an ion exchange between F- and Cl- or OH-, as verified from the adsorbent and the solution by pH effect, energy dispersive X-ray, and ion chromatography.
文摘The tension property of aluminum-alloy sheet with different microstructures is measured, and the surface and tension fracture morphology of tension sample with and without orange peel are observed by using scanning electron microscope (SEM). Surface roughness and nano hardness of tension sample are measured. The results show that the average elongation of the samples with orange peel is lower than that without orange peel ; especially the r value of per- pendicular to the rolling direction is much lower than that without orange peel. The tension surface of the orange peel samples is very rough; various parameters of surface roughness are higher. Under the observation of SEM, a wider slid- ing band with a micro crack on the surface of orange peel sample can be found. The various parameters of surface rough- ness without orange peel sample are near to zero, the sliding band is narrow and without micro cracks. The dimple width in tensile fracture of orange peel sample is larger than that without orange peel sample, but shear lip is narrower. The nano hardness testing results show that samples with orange peel behave high elastic modulus, high hardness, and high maximum load, but low plastic deformation depth. These mentioned features can completely describe surface and frac- ture morphology of tension samt31es with oranze peel.
基金Research on the Pattern of gales over the Qiongzhou Strait and Forecasting Methods, a project of Natural Science Foundation of China (40765002)Forecasting System of Gales over the Qiongzhou Strait, a key science project for Hainan province (070302)
文摘The spatial variation and diurnal fluctuation of sea surface wind over the Qiongzhou Strait were described using verified datasets from automatic weather stations on board a ferry, buoys, and on the coast. Results are as follows: (1) On average, sea surface wind speed is 34 m/s larger over the Qiongzhou Strait than in the coastal area. Sea surface wind speeds of 8.0 rrds or above (on Beaufort scale five) in the coastal area are associated with speeds 5-6 m/s greater over the surface of the Qiongzhou Strait. (2) Gust coefficients for the Qiongzhou Strait decrease along with increasing wind speeds. When coastal wind speed is less than scale five, the average gust coefficient over the sea surface is between 1.4 and 1.5; when wind speed is equal to scale five or above, the average gust coefficient is about 1.35. (3) In autumn and winter, the diurnal differences of average wind speed and wind consistency over the strait are less than those in the coastal area; when wind speed is 10.8 m/s (scale six) or above, the diurnal difference of average wind speed decreases while wind consistency increases for both the strait and the coast.
文摘Retinal dystrophies are genetically determined diseases, implying the loss of function of the retina with a wide phenotypic and genotypic variability. There are very few phenotypic, genotypic and epidemiological data on retinal dystrophies in Latin America. The Objective of this study is to describe the epidemioiogical and clinical characteristics of hereditary retinal and choroidal diseases, in retina practices in Panama. A descriptive study, from 2012 to 2013, was performed in the main retina practices in Panama. All detected patients were given a free appointment to gather their phenotypic characteristics and pedigrees. An incidence of five new cases per year, and an accumulated incidence of 5.35 patients per I0,000 was calculated for the public hospitals. A frequency of 2.7 cases per 1,000 patients was observed in the main retina practices, where 69% had rod-cone dystrophies, 14.3% cone-rod dystrophies, 7.1% Stargardt disease, 4.8% Stargardt-like macular dystrophy and two patients presented other dystrophies. Blindness was the main family antecedent (45.2%). Retinal pigment was present in 59% and strabismus in 21.4% of the patients. Rod-cone and cone-rod dystrophies had similar geographic distribution and the autosomal recessive inheritance pattern was the most frequently observed. This study gives the first phenotypic data of retinal dystrophies in Panama to orient clinicians for a better diagnosis and phenotyping-genotyping correlation for retinal dystrophies in Central America.
文摘A fully flattened carbon nanotube (FNT), a graphene nanoribbon (GNR) analogue, provides a hollow space at edges for endohedral doping. Due to the unique shape of the hollow space of FNTs, novel types of low-dimensional arrangements of atoms and molecules can be obtained through endohedral doping into FNTs, which provides a new type of nanopeapods. FNT-based nanopeapods have been synthesized through endohedral doping of C60, and their structural characterization with transmission electron microscopy (TEM) performed. The doping of C60 into the inner hollow space of FNTs has been carried out via the gas-phase filling method, where open-ended FNTs are sealed in a glass ampoule and heated at 723-773 K for two days. TEM observations show that most of the encapsulated C60 molecules align as single molecular chains along the edges of FNTs and that some of the C60 forms two-dimensional close-packed structures inside FNTs.