期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DREAM算法分析地下水数值模拟不确定性的影响因素 被引量:6
1
作者 杨运 吴吉春 +1 位作者 骆乾坤 吴剑锋 《地质论评》 CAS CSCD 北大核心 2016年第2期353-361,共9页
地下水数值模拟常受到模型不确定性、观测资料不确定性等多种不确定性因素的影响,对这些影响因素进行定量分析十分必要。将差分进化自适应梅特罗波利斯(Differential Evolution Adaptive Metropolis,DREAM)算法与MODFLOW模型结合应用于... 地下水数值模拟常受到模型不确定性、观测资料不确定性等多种不确定性因素的影响,对这些影响因素进行定量分析十分必要。将差分进化自适应梅特罗波利斯(Differential Evolution Adaptive Metropolis,DREAM)算法与MODFLOW模型结合应用于地下水数值模拟不确定性的定量分析。以模型结构概化、水位观测资料误差这两种重要不确定性来源为例,通过一个理想地下水流模型,系统分析两者对模型参数及模型输出结果不确定性的影响。研究结果表明:模型结构概化及水位观测资料误差共同引起了地下水数值模拟的不确定性,但模型结构概化起到了主控作用。模型结构概化合理时,模型参数及模型输出结果的不确定性较小,并随观测资料误差不确定性的增大而增大;模型结构概化不合理时,模型参数及模型输出结果主要受控于模型结构概化带来的影响,且不确定性显著增大;观测资料误差相同情况下,模型结构概化越接近于真实的水文地质条件,模型参数及模型输出结果的不确定性越小。 展开更多
关键词 DREAM 模型结构概化 观测资料误差 数值模拟 不确定性 地下水
下载PDF
Three-Step Difference Scheme for Solving Nonlinear Time-Evolution Partial Differential Equations
2
作者 GONG Jing WANG Bin JI Zhong-Zhen 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第6期423-427,共5页
In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of squa... In this paper, a special three-step difference scheme is applied to the solution of nonlinear time-evolution equations, whose coefficients are determined according to accuracy constraints, necessary conditions of square conservation, and historical observation information under the linear supposition. As in the linear case, the schemes also have obvious superiority in overall performance in the nonlinear case compared with traditional finite difference schemes, e.g., the leapfrog(LF) scheme and the complete square conservation difference(CSCD) scheme that do not use historical observations in determining their coefficients, and the retrospective time integration(RTI) scheme that does not consider compatibility and square conservation. Ideal numerical experiments using the one-dimensional nonlinear advection equation with an exact solution show that this three-step scheme minimizes its root mean square error(RMSE) during the first 2500 integration steps when no shock waves occur in the exact solution, while the RTI scheme outperforms the LF scheme and CSCD scheme only in the first 1000 steps and then becomes the worst in terms of RMSE up to the 2500th step. It is concluded that reasonable consideration of accuracy, square conservation, and historical observations is also critical for good performance of a finite difference scheme for solving nonlinear equations. 展开更多
关键词 three-step difference scheme NONLINEAR square conservation accuracy historical observations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部