An algorithm (differential mode) is presented for the improvement of harmonic tidal analysis along T/P tracks, in which the differences between the observed sea surface heights at adjacent points are taken as observ...An algorithm (differential mode) is presented for the improvement of harmonic tidal analysis along T/P tracks, in which the differences between the observed sea surface heights at adjacent points are taken as observations. Also, the observation equations are constrained with the results of the crossover analysis; the parameter estimations are performed at 0.1° latitude intervals by the least squares. Cycle 10 to 330 T/P altimeter data covering the China Sea and the Northwest Pacific Ocean (2°-50° N,105°-150° E) are adopted for a refined along-track harmonic tidal analysis, and harmonic constants of 12 constituents in 8 474 points are obtained, which indicates that the algorithm can efficiently remove non-tidal effects in the altimeter observations, and improve the precision of tide parameters. Moreover, parameters along altimetry tracks represent a smoother distribution than those obtained by traditional algorithms. The root mean squares of the fitting errors between the tidal height model and the observations reduce from 11 cm to 1.3 cm.展开更多
The dynamics of high-altitude inland lakes in the Tibetan Plateau are sensitive indicators of climate change. Due to the remoteness and hard access, satellite altimetry becomes an effective approach to obtaining large...The dynamics of high-altitude inland lakes in the Tibetan Plateau are sensitive indicators of climate change. Due to the remoteness and hard access, satellite altimetry becomes an effective approach to obtaining largescale and temporally continuous information of lake-level changes. The CryoSat-2 altimetry is expected to solve the current problem that earlier radar altimeters are only practical for monitoring large water bodies, while ICESat laser altimetry is available only for the period 2003-2009. In this study, the comparison of CryoSat-2 altimetry for Namco with in situ water-level data suggests a high cor- relation coefficient of 0.71 (P 〈 0.01), with the mean error of -0.12 m and root-mean-square error of 0.18 m. Further, the combination of ICESat and CryoSat-2 altimetry data and in situ lake-level observations reveals a rapid water- level rise of 0.24 4- 0.04 m/year during 2003-2008 and then a slightly decreasing trend of -0.09 4- 0.04 m/year during 2009-2013. This study suggests that the CryoSat-2 altimetry has the potential of sustaining the fine observa- tions on Tibetan lakes, following the ICESat mission. Besides, the examination of four key climatic variables (temperature, precipitation, potential evapotranspiration, and relative humidity) during 1990-2013 indicates that the wetting climate over Namco Basin stagnated or even reversed around 2006, which may be tightly related to the slowing lake growth.展开更多
基金Supported by the National Natural Science Foundation of China (No. 40671161) and the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China(No.1469990324233-03-04).
文摘An algorithm (differential mode) is presented for the improvement of harmonic tidal analysis along T/P tracks, in which the differences between the observed sea surface heights at adjacent points are taken as observations. Also, the observation equations are constrained with the results of the crossover analysis; the parameter estimations are performed at 0.1° latitude intervals by the least squares. Cycle 10 to 330 T/P altimeter data covering the China Sea and the Northwest Pacific Ocean (2°-50° N,105°-150° E) are adopted for a refined along-track harmonic tidal analysis, and harmonic constants of 12 constituents in 8 474 points are obtained, which indicates that the algorithm can efficiently remove non-tidal effects in the altimeter observations, and improve the precision of tide parameters. Moreover, parameters along altimetry tracks represent a smoother distribution than those obtained by traditional algorithms. The root mean squares of the fitting errors between the tidal height model and the observations reduce from 11 cm to 1.3 cm.
基金supported by the National Special Basic Research Project of the Ministry of Science and Technology(2013FY111400-2,2009CB723901)the National Natural Science Foundation of China(41120114001,41125003,41071254,40971048)+3 种基金the European Space Agency(ESA AO 2605)the Knowledge Innovation Foundation Program for outstanding Young Scholar of Chinese Academy of Sciences(CAS)(KZCX2-EWQN104)supported by Open Research Fund of Key Laboratory of Tibetan Environmental Changes and Land Surface Processes in Chinese Academy of SciencesOpen Fund of State Key Laboratory of Remote Sensing Science
文摘The dynamics of high-altitude inland lakes in the Tibetan Plateau are sensitive indicators of climate change. Due to the remoteness and hard access, satellite altimetry becomes an effective approach to obtaining largescale and temporally continuous information of lake-level changes. The CryoSat-2 altimetry is expected to solve the current problem that earlier radar altimeters are only practical for monitoring large water bodies, while ICESat laser altimetry is available only for the period 2003-2009. In this study, the comparison of CryoSat-2 altimetry for Namco with in situ water-level data suggests a high cor- relation coefficient of 0.71 (P 〈 0.01), with the mean error of -0.12 m and root-mean-square error of 0.18 m. Further, the combination of ICESat and CryoSat-2 altimetry data and in situ lake-level observations reveals a rapid water- level rise of 0.24 4- 0.04 m/year during 2003-2008 and then a slightly decreasing trend of -0.09 4- 0.04 m/year during 2009-2013. This study suggests that the CryoSat-2 altimetry has the potential of sustaining the fine observa- tions on Tibetan lakes, following the ICESat mission. Besides, the examination of four key climatic variables (temperature, precipitation, potential evapotranspiration, and relative humidity) during 1990-2013 indicates that the wetting climate over Namco Basin stagnated or even reversed around 2006, which may be tightly related to the slowing lake growth.