Aiming at the uniform features of acceleration response spectra, two scalar periods-the response spectral predominant period Tp and the smoothed spectral predominant period To are employed to normalize the abscissa of...Aiming at the uniform features of acceleration response spectra, two scalar periods-the response spectral predominant period Tp and the smoothed spectral predominant period To are employed to normalize the abscissa of the normalized response spectra (NRS) of ground motions, respectively. Engineering characteristics of 5% -damped NRS, and the bi-normalized response spectra (BNRS) are investigated accounting for the effects of soil condition and fault distance. Nearly 600 horizontal ground motion components during the Chi-Chi earthquake are included in the analysis. It shows that the NRS strongly depends on soil condition and fault distance. However, soil condition and distance have only a slight influence on two kinds of BNRS. Dispersion analysis indicates that such normalization can reduce scatter in the derivation of response spectral shapes. Finally, a parametric analysis of the scalar periods (Tp, To) is performed and then compared with those of previous studies. These special and particular aspects of earthquake response spectra and scalar periods need to be considered in developing earthquake-resistant design criteria.展开更多
基金China Postdoctoral Science Foundation ( No20060400826)
文摘Aiming at the uniform features of acceleration response spectra, two scalar periods-the response spectral predominant period Tp and the smoothed spectral predominant period To are employed to normalize the abscissa of the normalized response spectra (NRS) of ground motions, respectively. Engineering characteristics of 5% -damped NRS, and the bi-normalized response spectra (BNRS) are investigated accounting for the effects of soil condition and fault distance. Nearly 600 horizontal ground motion components during the Chi-Chi earthquake are included in the analysis. It shows that the NRS strongly depends on soil condition and fault distance. However, soil condition and distance have only a slight influence on two kinds of BNRS. Dispersion analysis indicates that such normalization can reduce scatter in the derivation of response spectral shapes. Finally, a parametric analysis of the scalar periods (Tp, To) is performed and then compared with those of previous studies. These special and particular aspects of earthquake response spectra and scalar periods need to be considered in developing earthquake-resistant design criteria.