期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
联合规则推理模式和事实嵌入的知识图谱推理
1
作者 单晓欢 蒋建涛 +1 位作者 陈泽 宋宝燕 《模式识别与人工智能》 EI 2024年第10期923-935,共13页
知识图谱推理是解决知识图谱不完整性的重要手段之一.针对现有基于嵌入的推理模型依赖准确事实,可解释性较差,而基于规则的推理模型过于依赖图谱的完整性,数据稀疏时推理性能较低,无法准确表达推理模式.因此文中提出联合规则推理模式和... 知识图谱推理是解决知识图谱不完整性的重要手段之一.针对现有基于嵌入的推理模型依赖准确事实,可解释性较差,而基于规则的推理模型过于依赖图谱的完整性,数据稀疏时推理性能较低,无法准确表达推理模式.因此文中提出联合规则推理模式和事实嵌入的知识图谱推理模型(Knowledge Graph Reasoning Combining Rule Inference Patterns and Fact Embedding,RPFE).首先,将BoxE作为基础嵌入模型,实现事实的嵌入表示.再设计推理模式差异性函数,辅助嵌入模型捕获不同推理模式的规则,并对规则学习提供直观的嵌入解释.然后,提出事实距离一致性评分函数,强化嵌入表示.最后,优化规则和事实得分,弥补知识图谱高质量事实不足的缺陷,进而提升模型推理的可解释性.在3个公开数据集上的实验表明RPFE在知识图谱推理方面的优越性. 展开更多
关键词 知识图谱推理 知识图谱嵌入 规则学习 规则推理模式 可解释性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部