In classical nonlinear programming, it is a general method of developing optimality conditions that a nonlinear programming problem is linearized as a linear programming problem by using first order approximations of ...In classical nonlinear programming, it is a general method of developing optimality conditions that a nonlinear programming problem is linearized as a linear programming problem by using first order approximations of the functions at a given feasible point. The linearized procedure for differentiable nonlinear programming problems can be naturally generalized to the quasi differential case. As in classical case so called constraint qualifications have to be imposed on the constraint functions to guarantee that for a given local minimizer of the original problem the nullvector is an optimal solution of the corresponding 'quasilinearized' problem. In this paper, constraint qualifications for inequality constrained quasi differentiable programming problems of type min {f(x)|g(x)≤0} are considered, where f and g are qusidifferentiable functions in the sense of Demyanov. Various constraint qualifications for this problem are presented and a new one is proposed. The relations among these conditions are investigated. Moreover, a Wolf dual problem for this problem is introduced, and the corresponding dual theorems are given.展开更多
An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programmin...An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.展开更多
In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be...In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.展开更多
Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studi...Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems.展开更多
Heterogeneous networks(HetNets)consisting of macro cells with very large antenna arrays and a secondary tier of small cells with a few antennas each can well tackle the contradiction of large coverage of the network a...Heterogeneous networks(HetNets)consisting of macro cells with very large antenna arrays and a secondary tier of small cells with a few antennas each can well tackle the contradiction of large coverage of the network and high data rate at the hot spots.However,it is not permissible to assign orthogonal pilot sequences for all the supported users due to the large number.Hence,we propose a pilot reduction scheme based on the heterogeneous system configurations and the unique topology of this HetNet.The reusing of pilot sequences causes the presence of the contaminated channel state information(CSI) and results in receivers' Quality of Service(QoS) outage.With the contaminated CSI,we provide an energy-efficient beamforming based on minimizing the total power consumption while keeping the QoS constraints satisfied and restricting the QoS outage probability below a given specification.By applying the approach of Bernstein approximation and semi-definite relaxation,we transform the original intractable chance constrained program to a convex problem conservatively.Numerical results show that the average power consumption of the proposed beamforming for our pilot reduction scheme is close to that of the perfect CSI case.Since our scheme will greatly compress the length of pilot sequence especially for those highly densified network with large number of small cells,it will be crucially helpful to put such two-tier massive multiple-input and multiple-output(MIMO) systems into practice.展开更多
In this paper, we present a new deformable model for shape segmentation, which makes two modifications to the original level set implementation of deformable models.The modifications are motivated by difficulties that...In this paper, we present a new deformable model for shape segmentation, which makes two modifications to the original level set implementation of deformable models.The modifications are motivated by difficulties that we have encountered in applying deformable models to segmentation of medical images.The level set algorithm has some advantages over the classical snake deformable models.However, it could develop large gaps in the boundary and holes within the objects.Such boundary gaps and holes of objects can cause inaccurate segmentation that requires manual correction.The proposed method in this paper possesses an inherent property to detect gaps and holes within the object with a single initial contour and also does not require specific initialization.The first modification is to replace the edge detector by some area constraint, and the second modification utilizes weighted length constraint to regularize the curve under evolution.The proposed method has been applied to both synthetic and real images with promising results.展开更多
Land scarcity has become the prominent obstacle on the way to sustainable development for China. Under the constraints of land shortage, how to allocate the finite land resources to the multiple land users in China co...Land scarcity has become the prominent obstacle on the way to sustainable development for China. Under the constraints of land shortage, how to allocate the finite land resources to the multiple land users in China considering various political, environmental, ecological and economic conditions have become research topics with great significance. In this study, an interval fuzzy national-scale land-use model(IFNLM) was developed for optimizing land systems of China. IFNLM is based on an integration of existing interval linear programming(ILP), and fuzzy flexible programming(FFP) techniques. IFNLM allows uncertainties expressed as discrete interval values and fuzzy sets to be incorporated within a general optimization framework. It can also facilitate national-scale land-use planning under various environmental, ecological, social conditions within a multi-period and multi-option context. Then, IFNLM was applied to a real case study of land-use planning in China. The satisfaction degree of environmental constraints is between 0.69 and 0.97, the system benefit will between 198.25 × 1012 USD and 229.67 × 1012 USD. The results indicated that the hybrid model can help generate desired policies for land-use allocation with a maximized economic benefit and minimized environmental violation risk. Optimized land-use allocation patterns can be generated from the proposed IFNLM.展开更多
To obtain the near optimal path for the mobile robots in the present of the obstacles, where the robots are subject to both the nonholonomic constraints and the bound to the curvature of the path, a simple planning i...To obtain the near optimal path for the mobile robots in the present of the obstacles, where the robots are subject to both the nonholonomic constraints and the bound to the curvature of the path, a simple planning is applied by the heuristic searching method in which Reeds and Shepp’s shortest paths are chosen as heuristic functions. It has performed well in simulation of mobile robots moving in a cluttered environment.展开更多
In this paper, optimality conditions for multiobjective programming problems having V-invex objective and constraint functions are considered. An equivalent multiobjective programming problem is constructed by a modif...In this paper, optimality conditions for multiobjective programming problems having V-invex objective and constraint functions are considered. An equivalent multiobjective programming problem is constructed by a modification of the objective function.Furthermore, a (α, η)-Lagrange function is introduced for a constructed multiobjective programming problem, and a new type of saddle point is introduced. Some results for the new type of saddle point are given.展开更多
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir...To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.展开更多
A improving Steady State Genetic Algorithm for global optimization over linear constraint non-convex programming problem is presented. By convex analyzing, the primal optimal problem can be converted to an equivalent ...A improving Steady State Genetic Algorithm for global optimization over linear constraint non-convex programming problem is presented. By convex analyzing, the primal optimal problem can be converted to an equivalent problem, in which only the information of convex extremes of feasible space is included, and is more easy for GAs to solve. For avoiding invalid genetic operators, a redesigned convex crossover operator is also performed in evolving. As a integrality, the quality of two problem is proven, and a method is also given to get all extremes in linear constraint space. Simulation result show that new algorithm not only converges faster, but also can maintain an diversity population, and can get the global optimum of test problem.展开更多
To solve the problem of time-awarc test case prioritization,a hybrid algorithm composed of integer linear programming and the genetic algorithm(ILP-GA)is proposed.First,the test case suite which cm maximize the number...To solve the problem of time-awarc test case prioritization,a hybrid algorithm composed of integer linear programming and the genetic algorithm(ILP-GA)is proposed.First,the test case suite which cm maximize the number of covered program entities a d satisfy time constraints is selected by integer linea progamming.Secondly,the individual is encoded according to the cover matrices of entities,and the coverage rate of program entities is used as the fitness function and the genetic algorithm is used to prioritize the selected test cases.Five typical open source projects are selected as benchmark programs.Branch and method are selected as program entities,and time constraint percentages a e 25%and 75%.The experimental results show that the ILP-GA convergence has faster speed and better stability than ILP-additional and IP-total in most cases,which contributes to the detection of software defects as early as possible and reduces the software testing costs.展开更多
文摘In classical nonlinear programming, it is a general method of developing optimality conditions that a nonlinear programming problem is linearized as a linear programming problem by using first order approximations of the functions at a given feasible point. The linearized procedure for differentiable nonlinear programming problems can be naturally generalized to the quasi differential case. As in classical case so called constraint qualifications have to be imposed on the constraint functions to guarantee that for a given local minimizer of the original problem the nullvector is an optimal solution of the corresponding 'quasilinearized' problem. In this paper, constraint qualifications for inequality constrained quasi differentiable programming problems of type min {f(x)|g(x)≤0} are considered, where f and g are qusidifferentiable functions in the sense of Demyanov. Various constraint qualifications for this problem are presented and a new one is proposed. The relations among these conditions are investigated. Moreover, a Wolf dual problem for this problem is introduced, and the corresponding dual theorems are given.
基金The National Natural Science Foundation of China(No. 50908235 )China Postdoctoral Science Foundation (No.201003520)
文摘An optimal dimension-down iterative algorithm (DDIA) is proposed for solving a mixed (continuous/ discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraints (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) model. The idea of the proposed DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous) are fixed to altemately optimize another group of variables (continuous/discrete). Some continuous network design problems (CNDPs) and discrete network design problems (DNDPs) are solved repeatedly until the optimal solution is obtained. A numerical example is given to demonstrate the efficiency of the proposed algorithm.
基金Supported by the Natural Science Foundation of Henan Province(0511012000 0511013600) Supported by the Science Foundation for Pure Research of Natural Science of the Education Department of Henan Province(200512950001)
文摘In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.
文摘Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems.
基金supported in part by the "863" Program of China No. 2014AA01A704National Natural Science Foundation of China No.61171080
文摘Heterogeneous networks(HetNets)consisting of macro cells with very large antenna arrays and a secondary tier of small cells with a few antennas each can well tackle the contradiction of large coverage of the network and high data rate at the hot spots.However,it is not permissible to assign orthogonal pilot sequences for all the supported users due to the large number.Hence,we propose a pilot reduction scheme based on the heterogeneous system configurations and the unique topology of this HetNet.The reusing of pilot sequences causes the presence of the contaminated channel state information(CSI) and results in receivers' Quality of Service(QoS) outage.With the contaminated CSI,we provide an energy-efficient beamforming based on minimizing the total power consumption while keeping the QoS constraints satisfied and restricting the QoS outage probability below a given specification.By applying the approach of Bernstein approximation and semi-definite relaxation,we transform the original intractable chance constrained program to a convex problem conservatively.Numerical results show that the average power consumption of the proposed beamforming for our pilot reduction scheme is close to that of the perfect CSI case.Since our scheme will greatly compress the length of pilot sequence especially for those highly densified network with large number of small cells,it will be crucially helpful to put such two-tier massive multiple-input and multiple-output(MIMO) systems into practice.
基金Supported by the National Natural Science Foundation of China (No.60472071, 60532080, 60602062)the Natural Science Foundation of Beijing (No.4051002)
文摘In this paper, we present a new deformable model for shape segmentation, which makes two modifications to the original level set implementation of deformable models.The modifications are motivated by difficulties that we have encountered in applying deformable models to segmentation of medical images.The level set algorithm has some advantages over the classical snake deformable models.However, it could develop large gaps in the boundary and holes within the objects.Such boundary gaps and holes of objects can cause inaccurate segmentation that requires manual correction.The proposed method in this paper possesses an inherent property to detect gaps and holes within the object with a single initial contour and also does not require specific initialization.The first modification is to replace the edge detector by some area constraint, and the second modification utilizes weighted length constraint to regularize the curve under evolution.The proposed method has been applied to both synthetic and real images with promising results.
基金Under the auspices of National Natural Science Foundation of China(No.41201164)Humanities and Social Science Research Planning Fund,Ministry of Education of China(No.12YJCZH299)
文摘Land scarcity has become the prominent obstacle on the way to sustainable development for China. Under the constraints of land shortage, how to allocate the finite land resources to the multiple land users in China considering various political, environmental, ecological and economic conditions have become research topics with great significance. In this study, an interval fuzzy national-scale land-use model(IFNLM) was developed for optimizing land systems of China. IFNLM is based on an integration of existing interval linear programming(ILP), and fuzzy flexible programming(FFP) techniques. IFNLM allows uncertainties expressed as discrete interval values and fuzzy sets to be incorporated within a general optimization framework. It can also facilitate national-scale land-use planning under various environmental, ecological, social conditions within a multi-period and multi-option context. Then, IFNLM was applied to a real case study of land-use planning in China. The satisfaction degree of environmental constraints is between 0.69 and 0.97, the system benefit will between 198.25 × 1012 USD and 229.67 × 1012 USD. The results indicated that the hybrid model can help generate desired policies for land-use allocation with a maximized economic benefit and minimized environmental violation risk. Optimized land-use allocation patterns can be generated from the proposed IFNLM.
文摘To obtain the near optimal path for the mobile robots in the present of the obstacles, where the robots are subject to both the nonholonomic constraints and the bound to the curvature of the path, a simple planning is applied by the heuristic searching method in which Reeds and Shepp’s shortest paths are chosen as heuristic functions. It has performed well in simulation of mobile robots moving in a cluttered environment.
基金Supported by the National Natural Science Foundation of China(19871009)
文摘In this paper, optimality conditions for multiobjective programming problems having V-invex objective and constraint functions are considered. An equivalent multiobjective programming problem is constructed by a modification of the objective function.Furthermore, a (α, η)-Lagrange function is introduced for a constructed multiobjective programming problem, and a new type of saddle point is introduced. Some results for the new type of saddle point are given.
基金Project(60925011) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(9140A06040510BQXXXX) supported by Advanced Research Foundation of General Armament Department,China
文摘To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.
文摘A improving Steady State Genetic Algorithm for global optimization over linear constraint non-convex programming problem is presented. By convex analyzing, the primal optimal problem can be converted to an equivalent problem, in which only the information of convex extremes of feasible space is included, and is more easy for GAs to solve. For avoiding invalid genetic operators, a redesigned convex crossover operator is also performed in evolving. As a integrality, the quality of two problem is proven, and a method is also given to get all extremes in linear constraint space. Simulation result show that new algorithm not only converges faster, but also can maintain an diversity population, and can get the global optimum of test problem.
基金The Natural Science Foundation of Education Ministry of Shaanxi Province(No.15JK1672)the Industrial Research Project of Shaanxi Province(No.2017GY-092)Special Fund for Key Discipline Construction of General Institutions of Higher Education in Shaanxi Province
文摘To solve the problem of time-awarc test case prioritization,a hybrid algorithm composed of integer linear programming and the genetic algorithm(ILP-GA)is proposed.First,the test case suite which cm maximize the number of covered program entities a d satisfy time constraints is selected by integer linea progamming.Secondly,the individual is encoded according to the cover matrices of entities,and the coverage rate of program entities is used as the fitness function and the genetic algorithm is used to prioritize the selected test cases.Five typical open source projects are selected as benchmark programs.Branch and method are selected as program entities,and time constraint percentages a e 25%and 75%.The experimental results show that the ILP-GA convergence has faster speed and better stability than ILP-additional and IP-total in most cases,which contributes to the detection of software defects as early as possible and reduces the software testing costs.