We first recall some basic facts from the theory of discrete-time Markov chains arising from two types neutral and non-neutral evolution models of population genetics with constant size. We then define and analyze a v...We first recall some basic facts from the theory of discrete-time Markov chains arising from two types neutral and non-neutral evolution models of population genetics with constant size. We then define and analyze a version of such models whose fluctuating total population size is conserved on average only. In our model, the population of interest is seen as being embedded in a frame process which is a critical Galton Watson process. In this context, we address problems such as extinction, fixation, size of the population at fixation and survival probability to a bottleneck effect of the environment.展开更多
文摘We first recall some basic facts from the theory of discrete-time Markov chains arising from two types neutral and non-neutral evolution models of population genetics with constant size. We then define and analyze a version of such models whose fluctuating total population size is conserved on average only. In our model, the population of interest is seen as being embedded in a frame process which is a critical Galton Watson process. In this context, we address problems such as extinction, fixation, size of the population at fixation and survival probability to a bottleneck effect of the environment.