期刊文献+
共找到80篇文章
< 1 2 4 >
每页显示 20 50 100
非平衡符号双圈图的拉普拉斯谱半径的排序
1
作者 李德明 王洁 《首都师范大学学报(自然科学版)》 2024年第1期3-8,共6页
研究了非平衡符号双圈图的第一到第六大的拉普拉斯特征值的分布规律,完善了现有结论中一些不准确的情况,推广了现有的结果,并给出了取得极值情况的图例。
关键词 非平衡符号 双圈图 半径 拉普拉斯矩阵 特征多项式
下载PDF
给定点连通度的图的补图的无符号拉普拉斯谱半径
2
作者 李铿 邱欢 +1 位作者 张维娟 王国平 《新疆师范大学学报(自然科学版)》 2024年第3期64-68,共5页
假设G是一个具有点集V(G)={v_(1),v_(2),…,v_(n)}和边集E(G)的连通简单图,矩阵Q(G)=D(G)+A(G)被称为图G的无符号拉普拉斯矩阵,其中D(G)和A(G)分别是图G的度对角矩阵和邻接矩阵。称矩阵Q(G)的最大特征值为图G的无符号拉普拉斯谱半径。图... 假设G是一个具有点集V(G)={v_(1),v_(2),…,v_(n)}和边集E(G)的连通简单图,矩阵Q(G)=D(G)+A(G)被称为图G的无符号拉普拉斯矩阵,其中D(G)和A(G)分别是图G的度对角矩阵和邻接矩阵。称矩阵Q(G)的最大特征值为图G的无符号拉普拉斯谱半径。图G的补图记为G^(c)=(V(G^(c))),E(G^(c)),这里V(G^(c))=V(G)和E(G^(c))={xy|x,y∈V(G),xy∉E(G)}.文章在给定点连通度且直径大于3的图的所有补图中,确定了无符号拉普拉斯谱半径达到最小时的唯一图。 展开更多
关键词 无符号拉普拉斯矩阵 无符号拉普拉斯半径 补图 点连通度
下载PDF
最大度为3或5的四圈哈密尔顿图的无符号拉普拉斯谱半径
3
作者 张子杰 蔡改香 肖凤茹 《安庆师范大学学报(自然科学版)》 2024年第3期16-23,共8页
在结构图论中,利用图的谱半径来刻画图的哈密尔顿性已经取得了很多成果,但是在哈密尔顿图的谱半径方面还缺乏研究。本文基于四圈哈密尔顿图的概念,利用图的谱参数与结构参数之间的关系,分别确定了最大度为3和5的四圈哈密尔顿图类中具有... 在结构图论中,利用图的谱半径来刻画图的哈密尔顿性已经取得了很多成果,但是在哈密尔顿图的谱半径方面还缺乏研究。本文基于四圈哈密尔顿图的概念,利用图的谱参数与结构参数之间的关系,分别确定了最大度为3和5的四圈哈密尔顿图类中具有最大无符号拉普拉斯谱半径的图的结构。 展开更多
关键词 无符号拉普拉斯半径 四圈哈密尔顿图 最大度
下载PDF
双圈图的补图的无符号拉普拉斯谱半径
4
作者 李铿 王岚 王国平 《理论数学》 2023年第7期1903-1910,共8页
设D(G)和A(G)分别是图G的度矩阵和邻接矩阵,则Q(G)=D(G)+A(G)就是G的无符号拉普拉斯矩阵。让Un3是把n−3条悬挂边粘到3圈C3上的一点后得到的单圈图,θn∗是把n−4条悬挂边粘到θ (2,1,2)的一个三度点得到的双圈图。在这篇文章里我们证明了... 设D(G)和A(G)分别是图G的度矩阵和邻接矩阵,则Q(G)=D(G)+A(G)就是G的无符号拉普拉斯矩阵。让Un3是把n−3条悬挂边粘到3圈C3上的一点后得到的单圈图,θn∗是把n−4条悬挂边粘到θ (2,1,2)的一个三度点得到的双圈图。在这篇文章里我们证明了,取得最大无符号拉普拉斯谱半径的单圈图和双圈图分别是Un3和θn∗。 展开更多
关键词 无符号拉普拉斯矩阵 补图 半径
下载PDF
无符号拉普拉斯谱半径与图的哈密尔顿性 被引量:1
5
作者 何焕 王礼想 叶淼林 《安庆师范大学学报(自然科学版)》 2023年第2期31-34,共4页
在结构图论中,图的哈密尔顿性的谱刻画是最具有影响力的课题之一,其主要思想是判断一个图是不是哈密尔顿图,这是NP-完全问题。因此,诸多学者对哈密尔顿性问题的研究主要集中在寻找适当的充分条件。本文借助补图的无符号拉普拉斯谱半径... 在结构图论中,图的哈密尔顿性的谱刻画是最具有影响力的课题之一,其主要思想是判断一个图是不是哈密尔顿图,这是NP-完全问题。因此,诸多学者对哈密尔顿性问题的研究主要集中在寻找适当的充分条件。本文借助补图的无符号拉普拉斯谱半径来刻画具有较大最小度的图的哈密尔顿性。首先,采用反证法构造了原图的闭包,将原图是否具有某性质转化到其闭包中;其次对闭包补图的结构进行了合理的分类讨论;最后分别给出了具有较大最小度的图G是哈密尔顿的,哈密尔顿-连通的以及从任意点出发可迹的关于无符号拉普拉斯谱半径的充分条件。 展开更多
关键词 无符号拉普拉斯半径 哈密尔顿-连通 哈密尔顿 可迹 最小度
下载PDF
一般图与二部图中完美匹配关于距离无符号拉普拉斯谱半径的存在性
6
作者 严子墨 刘畅 李建平 《数学理论与应用》 2023年第1期74-84,共11页
令D(G)=(D_(i,j))为连通图G的距离矩阵,其中D_(i,j)等于顶点v_(i)和v_(j)之间的距离.令η1(G)为图G的距离无符号拉普拉斯谱半径,即距离无符号拉普拉斯矩阵Q(G)=Diag(Tr)+D(G)的最大特征值,其中Diag(Tr)为对角矩阵,Diag(Tr)_(ii)=Σ_(viv... 令D(G)=(D_(i,j))为连通图G的距离矩阵,其中D_(i,j)等于顶点v_(i)和v_(j)之间的距离.令η1(G)为图G的距离无符号拉普拉斯谱半径,即距离无符号拉普拉斯矩阵Q(G)=Diag(Tr)+D(G)的最大特征值,其中Diag(Tr)为对角矩阵,Diag(Tr)_(ii)=Σ_(vivj∈E)(G)D_(i,j).在本文中,我们研究图中完美匹配的存在性与距离无符号拉普拉斯谱半径之间的关系,并分别给出关于距离无符号拉普拉斯谱半径的一般图和二部图存在完美匹配的充分条件. 展开更多
关键词 距离无符号拉普拉斯半径 完美匹配 二部图
下载PDF
具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径(英文) 被引量:1
7
作者 余桂东 龚奇娟 段兰 《中国科学技术大学学报》 CAS CSCD 北大核心 2014年第3期176-180,共5页
一个连通图G的距离无符号拉普拉斯谱半径是G的距离无符号拉普拉斯矩阵的谱半径.G的距离无符号拉普拉斯矩阵定义为Q(G)=Tr(G)+D(G),这里Tr(G)是G的顶点传递的对角阵,且D(G)是G的距离矩阵.研究了所有n阶具有n-3个悬挂点的树的距离无符号... 一个连通图G的距离无符号拉普拉斯谱半径是G的距离无符号拉普拉斯矩阵的谱半径.G的距离无符号拉普拉斯矩阵定义为Q(G)=Tr(G)+D(G),这里Tr(G)是G的顶点传递的对角阵,且D(G)是G的距离矩阵.研究了所有n阶具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径的极小值,并刻画了一类n阶具有n-3个悬挂点的树的距离无符号拉普拉斯谱半径的极大值与极小值. 展开更多
关键词 距离无符号拉普拉斯矩阵 距离无符号拉普拉斯半径
下载PDF
复杂网络的拉普拉斯和无符号拉普拉斯特征谱分析 被引量:1
8
作者 李发旭 卫良 《青海师范大学学报(自然科学版)》 2016年第4期20-26,共7页
复杂网络的特征谱与网络的拓扑结构密切相关,通过研究特征谱可以更好地了解网络的拓扑性质和动力学行为.本文总结了复杂网络特征谱方面的研究成果,首先介绍了三类典型的复杂网络模型邻接矩阵、拉普拉斯矩阵和无符号拉普拉斯矩阵的特征... 复杂网络的特征谱与网络的拓扑结构密切相关,通过研究特征谱可以更好地了解网络的拓扑性质和动力学行为.本文总结了复杂网络特征谱方面的研究成果,首先介绍了三类典型的复杂网络模型邻接矩阵、拉普拉斯矩阵和无符号拉普拉斯矩阵的特征谱与网络结构和网络同步之间的关系,然后通过仿真分析研究了ER随机网络、WS小世界网络和BA无标度网络模型的邻接矩阵、拉普拉斯矩阵和无符号拉普拉斯矩阵的谱半径与网络规模和连边概率之间的关系. 展开更多
关键词 复杂网络 特征 网络结构 拉普拉斯矩阵 无符号拉普拉斯矩阵
下载PDF
子图匹配数与图无符号拉普拉斯谱(英文)
9
作者 余桂东 叶淼林 《应用数学》 CSCD 北大核心 2012年第3期603-607,共5页
设H是图G的一个子图.图G中同构于H的点不交的子图构成的集合称为G的一个H-匹配.图G的H-匹配的最大基数称为是G的H-匹配数,记为ν(H,G).本文主要研究ν(H,G)与G的无符号拉普拉斯谱的关系,同时也讨论了ν(H,G)与G的拉普拉斯谱的关系.
关键词 无符号拉普拉斯 子图匹配 拉普拉斯
下载PDF
循环图的无符号拉普拉斯谱半径 被引量:1
10
作者 周后卿 《邵阳学院学报(自然科学版)》 2015年第4期3-6,共4页
给出一个图G,称矩阵Q=D+A为无符号拉普拉斯谱矩阵,其中A表示G的邻接矩阵,D表示G的顶点度对角矩阵.研究了循环图的无符号拉普拉斯谱半径的上界,得到了几个有意义结果.进一步,讨论了循环图的卡氏积图的无符号拉普拉斯谱半径上界.
关键词 循环图 无符号拉普拉斯矩阵 半径
下载PDF
无符号拉普拉斯矩阵的谱整变化
11
作者 蔡改香 丁超 张超 《安庆师范学院学报(自然科学版)》 2013年第4期23-25,共3页
设G是一个简单图,Q(G)是它的无符号拉普拉斯矩阵。本文讨论了简单图G在添加一条边时其无符号拉普拉斯矩阵Q(G)的谱在两处发生整数变化的条件。
关键词 无符号拉普拉斯矩阵 整变化
下载PDF
沙漏图线图的(无符号)拉普拉斯谱的刻画 被引量:2
12
作者 秦正新 张文丽 +1 位作者 王国平 孟吉翔 《河南师范大学学报(自然科学版)》 CAS 北大核心 2015年第6期8-15,共8页
沙漏图是在一条路的两个悬挂点上各粘上一个三角形而形成的图.对于一个图G,若没有其他非同构的图和它是L-同谱的或Q-同谱的,则它是由L-谱,或Q-谱唯一确定的(G简记为DLS或DQS).将利用讨论排除的方法来证明沙漏图的线图是由它的(无符号)... 沙漏图是在一条路的两个悬挂点上各粘上一个三角形而形成的图.对于一个图G,若没有其他非同构的图和它是L-同谱的或Q-同谱的,则它是由L-谱,或Q-谱唯一确定的(G简记为DLS或DQS).将利用讨论排除的方法来证明沙漏图的线图是由它的(无符号)拉普拉斯谱唯一确定的. 展开更多
关键词 线图 沙漏图 拉普拉斯 无符号拉普拉斯
下载PDF
一些图的无符号拉普拉斯谱半径 被引量:1
13
作者 陈媛媛 牟善志 王国平 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第1期26-31,共6页
令A(G)表示G的邻接矩阵,Q(G)=D(G)+A(G)是G的无符号拉普拉斯矩阵,Q(G)的最大特征值是G的无符号拉普拉斯谱半径.在这篇文章中,我们分别确定了给定点连通度、给定块数和给定悬挂点数的图类中无符号拉普拉斯谱半径最大的图的结构.
关键词 无符号拉普拉斯半径 点连通度 悬挂点
下载PDF
加权冠图的无符号拉普拉斯谱和正规拉普拉斯谱 被引量:1
14
作者 魏斌 王维忠 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第8期77-83,共7页
刻画了G_(2)为正则图时,加权冠积图G_(1) G_(2)的无符号拉普拉斯谱,以及G_(1)和G_(2)都为正则图时,G_(1) G_(2)的正规拉普拉斯谱.借助数学归纳法,将所得关于G_(1) G_(2)的结果加以推广,得到了一般加权冠图G^((m))的相应结论.
关键词 无符号拉普拉斯 正规拉普拉斯 加权冠积图
下载PDF
三圈图的无符号拉普拉斯谱半径 被引量:1
15
作者 陈媛媛 王国平 《运筹学学报》 北大核心 2019年第1期81-89,共9页
假设图G的点集是V(G)={v_1,v_2,…,v_n},用d_(v_i)(G)表示图G中点v_i的度,令A(G)表示G的邻接矩阵,D(G)是对角线上元素等于d_(v_i)(G)的n×n对角矩阵,Q(G)=D(G)+A(G)是G的无符号拉普拉斯矩阵,Q(G)的最大特征值是G的无符号拉普拉斯谱... 假设图G的点集是V(G)={v_1,v_2,…,v_n},用d_(v_i)(G)表示图G中点v_i的度,令A(G)表示G的邻接矩阵,D(G)是对角线上元素等于d_(v_i)(G)的n×n对角矩阵,Q(G)=D(G)+A(G)是G的无符号拉普拉斯矩阵,Q(G)的最大特征值是G的无符号拉普拉斯谱半径.现确定了所有点数为n的三圈图中无符号拉普拉斯谱半径最大的图的结构. 展开更多
关键词 无符号拉普拉斯半径 三圈图
下载PDF
图的无符号拉普拉斯谱半径的一个新上下界(英文)
16
作者 赵宏挺 张海良 《中国科学技术大学学报》 CAS CSCD 北大核心 2015年第12期972-975,988,共5页
D为图的G度序列对角矩阵,A为图的邻接矩阵.Q=D+A为图的无符号拉普拉斯矩阵.Q的最大特征值ξ(G)称为图G的无符号拉普拉斯谱半径.这里将图的2度,平均2度等概念推广到k度与平均k度,得到了图的关于无符号拉普拉斯谱半径的一个新的上、下界.... D为图的G度序列对角矩阵,A为图的邻接矩阵.Q=D+A为图的无符号拉普拉斯矩阵.Q的最大特征值ξ(G)称为图G的无符号拉普拉斯谱半径.这里将图的2度,平均2度等概念推广到k度与平均k度,得到了图的关于无符号拉普拉斯谱半径的一个新的上、下界.最后举例与图的几个已知经典的界进行了比较. 展开更多
关键词 简单图 拉普拉斯半径 无符号拉普拉斯 k度 平均k度
下载PDF
无符号拉普拉斯谱半径的新上界
17
作者 黄鹏 常安 《数学研究》 CSCD 2012年第3期303-309,共7页
如果一个图存在定向满足其最大出度△^+不超过最大度△的一半,则通过估计图的半边路径(semi-edge walk)的个数,得到了该图的无符号拉普拉斯谱半径的一个新上界.进而根据D.Goncalves对平面图边分解的结果,得到了平面图无符号拉普拉斯谱... 如果一个图存在定向满足其最大出度△^+不超过最大度△的一半,则通过估计图的半边路径(semi-edge walk)的个数,得到了该图的无符号拉普拉斯谱半径的一个新上界.进而根据D.Goncalves对平面图边分解的结果,得到了平面图无符号拉普拉斯谱半径的一个新上界. 展开更多
关键词 无符号拉普拉斯 半径 上界 半边路径 平面图
下载PDF
关于图的距离无符号拉普拉斯谱半径的下界
18
作者 朱银芬 王国平 陈星 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第3期347-350,共4页
若一个连通图G的点集是V(G)={v1,v2,…,vn},那么图G的距离矩阵D(G)=(dij),其中dij表示点vi与vj之间的距离.令TrG(vi)表示点vi到图G中其他所有点的距离之和,Tr(G)表示i行i列位置的元素TrG(vi)的对角矩阵.图G的距离无符号拉普拉斯矩阵QD(G... 若一个连通图G的点集是V(G)={v1,v2,…,vn},那么图G的距离矩阵D(G)=(dij),其中dij表示点vi与vj之间的距离.令TrG(vi)表示点vi到图G中其他所有点的距离之和,Tr(G)表示i行i列位置的元素TrG(vi)的对角矩阵.图G的距离无符号拉普拉斯矩阵QD(G)=Tr(G)+D(G).QD(G)的最大特征值λQ(G)是图G的距离无符号拉普拉斯谱半径.该文确定了给定匹配数的n个点的图的距离无符号拉普拉斯谱半径的下界. 展开更多
关键词 距离无符号拉普拉斯矩阵 半径 匹配数
下载PDF
距离无符号拉普拉斯整谱的完全r-部图(英文)
19
作者 赵爽 李丹 孟吉翔 《新疆大学学报(自然科学版)》 CAS 北大核心 2016年第2期153-160,共8页
对一个n个顶点的图G,G的距离无符号拉普拉斯矩阵记为D^Q(G)=Tr(G)+D(G),其中Tr(G),D(G)分别表示G的顶点传输矩阵及其距离矩阵.G的距离无符号拉普拉斯特征多项式(或简称D^Q-多项式)是DQ/G(λ)=|λI_n-D^Q(G)|,其中I_n是n×n阶单位矩... 对一个n个顶点的图G,G的距离无符号拉普拉斯矩阵记为D^Q(G)=Tr(G)+D(G),其中Tr(G),D(G)分别表示G的顶点传输矩阵及其距离矩阵.G的距离无符号拉普拉斯特征多项式(或简称D^Q-多项式)是DQ/G(λ)=|λI_n-D^Q(G)|,其中I_n是n×n阶单位矩阵.如果G的所有D^Q-特征值都是整数,称图G是距离无符号拉普拉斯整谱图.本文将给出完全r-部图是距离无符号拉普拉斯整谱图的一个必要充分条件,从而构造出无穷多类新的距离无符号拉普拉斯整谱图. 展开更多
关键词 完全r-部图 距离无符号拉普拉斯
下载PDF
含割边的连通图最小距离无符号拉普拉斯谱半径
20
作者 查淑萍 李路遥 高芳 《池州学院学报》 2016年第3期23-25,共3页
在所有含割边的n阶连通图中,利用特征值与特征向量的关系,刻画了具有最小距离无符号拉普拉斯谱半径的图的结构,在此基础上,给出了含割边的n阶连通图的距离无符号拉普拉斯谱半径的一个下界。
关键词 割边 距离无符号拉普拉斯矩阵 半径
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部