In order to examine how a propagator behaves in non-perturbative theories and how its behavior is influenced by the choice of a covariant gauge a truncated Dyson-Schwinger equation is used to numerically investigate t...In order to examine how a propagator behaves in non-perturbative theories and how its behavior is influenced by the choice of a covariant gauge a truncated Dyson-Schwinger equation is used to numerically investigate the properties of fermions and bosons in 3D quantum electrodynamics QED and a series of self-consistent solutions for the fermion propagator in the Nambu and Wigner phases are obtained. These numerical solutions show that the propagator behaves very differently in the Landau gauge domain and in the infrared energy region outside it.By using the propagators in the Nambu and Wigner phases under various gauges it is further investigated how the fermion equivalent pressure difference and fermion condensation change with the gauge parameters.These results indicate that the phase transition described by the CJT equivalent potential and the chiral phase transition described by the chiral condensation are not completely identical.展开更多
The canonical quantum teleportation of two-particle arbitrary state is realized by means of phase operator and number operator. The maximally entangled eigenstates between the difference of phase operators and the sum...The canonical quantum teleportation of two-particle arbitrary state is realized by means of phase operator and number operator. The maximally entangled eigenstates between the difference of phase operators and the sum of number operators are considered as the quantum channels. In contrast to the standard quantum teleportation, the different unitary local operation of canonical teleportation can be simplified by a general expression.展开更多
We show that the time-dependent two-mode Fresnel operator is just the time-evolutional unitary operator governed by the Hamiltonian composed of quadratic combination of canonical operators in the way of exhibiting SU...We show that the time-dependent two-mode Fresnel operator is just the time-evolutional unitary operator governed by the Hamiltonian composed of quadratic combination of canonical operators in the way of exhibiting SU(1,1) algebra. This is an approach for obtaining the time-dependent Hamiltonian from the preassigned time evolution in classical phase space, an approach which is in contrast to Lewis-Riesenfeld's invariant operator theory of treating timedependent harmonic oscillators.展开更多
In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory ...In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory of gravity and even in Einstein's general theory of gravity,there are no grounds of gravitational shielding effects.But in quantum gauge theory of gravity,the gravitational shielding effects can be explained in a simple and natural way.In quantum gauge theory of gravity,gravitational gauge interactions of complex scalar field can be formulated based on gauge principle.After spontaneous symmetry breaking,if the vacuum of the complex scalar field is not stable and uniform,there will be a mass term of gravitational gauge field.When gravitational gauge field propagates in this unstable vacuum of the complex scalar field,it will decays exponentially,which is the nature of gravitational shielding effects.The mechanism of gravitational shielding effects is studied in this paper,and some main properties of gravitational shielding effects are discussed.展开更多
In the framework of topcolor-assisted technicolor model we calculate the contributions from the pseudo Goldstone bosons and new gauge bosons to . We find that for reasonable ranges of the parameters, the pseudo Goldst...In the framework of topcolor-assisted technicolor model we calculate the contributions from the pseudo Goldstone bosons and new gauge bosons to . We find that for reasonable ranges of the parameters, the pseudo Goldstone bosons afford dominate contribution, the correction arising from new gauge bosons is negligibly small, the maximum of the relative corrections is with the center-of-mass energy ; whereas in the case of , the relative corrections could be up to 16%. Thus large new physics might be observable at the experiments of next-generation linear colliders.展开更多
A new mechanism to introduce the mass of gauge field in supersymmetric gauge theory is discussed. The model has the strict local gauge symmetry and supersymmetry. Because we introduce two vector superfields simulta...A new mechanism to introduce the mass of gauge field in supersymmetric gauge theory is discussed. The model has the strict local gauge symmetry and supersymmetry. Because we introduce two vector superfields simultaneously, the model contains a massive gauge field as well as a massless gauge field.展开更多
The technique of integration within an ordered product of operators and the coherent-state representation are used to convert exponential operators of basis operators (P<SUP>2</SUP>, Q<SUP>2</SUP&...The technique of integration within an ordered product of operators and the coherent-state representation are used to convert exponential operators of basis operators (P<SUP>2</SUP>, Q<SUP>2</SUP>, PQ + QP) to those of the basis operators (a<SUP>2</SUP>, a<SUP>?2</SUP>, a<SUP>?</SUP>a). The coherent state representation of unitary squeezing operators in the factorized form and their normal product form are thus derived. The squeezing engendered by operators of the general form is also obtained.展开更多
Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In qua...Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge field, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.展开更多
A manifestly gauge-invariant formulation of non-relativistic quantum mechanics is applied to the case of time-dependent harmonic oscillator in the magnetic dipole approximation. A general equation for obtaining gauge-...A manifestly gauge-invariant formulation of non-relativistic quantum mechanics is applied to the case of time-dependent harmonic oscillator in the magnetic dipole approximation. A general equation for obtaining gauge-invariant transition probability amplitudes is derived.展开更多
In the SU(3) simple group model, the new neutral gauge boson Z' couples to pairs of SM fermions with couplings fixed in terms of the SM gauge couplings and depending only on the choice of the fermion embedding. In ...In the SU(3) simple group model, the new neutral gauge boson Z' couples to pairs of SM fermions with couplings fixed in terms of the SM gauge couplings and depending only on the choice of the fermion embedding. In this paper, we calculate the contributions of this new particle to the processes e^+e^-→l^+l^-, bb^-, and cc^- and study the possibility of detecting this new particle via these processes in the future high-energy linear e^+e^- collider(LC) experiments with √s= 500 GeV and £int= 340 fb^-1. We find that the new gauge boson Z' is most sensitive to the process e^+e^-→b^+b^-. As long as Mz,≤2 TeV , the absolute values of the relative correction parameter are larger than 5%. We calculate the forward-backward asymmetries and left-right asymmetries for the process e^+e^-→c^+c^-, with both the universal and anomaly-free fermion embeddings. Bounds on Z' masses are also estimated within 95% confidence level.展开更多
基金The National Natural Science Foundation of China(No.10947127)the Science Foundation of Southeast University(No.11047005)
文摘In order to examine how a propagator behaves in non-perturbative theories and how its behavior is influenced by the choice of a covariant gauge a truncated Dyson-Schwinger equation is used to numerically investigate the properties of fermions and bosons in 3D quantum electrodynamics QED and a series of self-consistent solutions for the fermion propagator in the Nambu and Wigner phases are obtained. These numerical solutions show that the propagator behaves very differently in the Landau gauge domain and in the infrared energy region outside it.By using the propagators in the Nambu and Wigner phases under various gauges it is further investigated how the fermion equivalent pressure difference and fermion condensation change with the gauge parameters.These results indicate that the phase transition described by the CJT equivalent potential and the chiral phase transition described by the chiral condensation are not completely identical.
文摘The canonical quantum teleportation of two-particle arbitrary state is realized by means of phase operator and number operator. The maximally entangled eigenstates between the difference of phase operators and the sum of number operators are considered as the quantum channels. In contrast to the standard quantum teleportation, the different unitary local operation of canonical teleportation can be simplified by a general expression.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475056.
文摘We show that the time-dependent two-mode Fresnel operator is just the time-evolutional unitary operator governed by the Hamiltonian composed of quadratic combination of canonical operators in the way of exhibiting SU(1,1) algebra. This is an approach for obtaining the time-dependent Hamiltonian from the preassigned time evolution in classical phase space, an approach which is in contrast to Lewis-Riesenfeld's invariant operator theory of treating timedependent harmonic oscillators.
文摘In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory of gravity and even in Einstein's general theory of gravity,there are no grounds of gravitational shielding effects.But in quantum gauge theory of gravity,the gravitational shielding effects can be explained in a simple and natural way.In quantum gauge theory of gravity,gravitational gauge interactions of complex scalar field can be formulated based on gauge principle.After spontaneous symmetry breaking,if the vacuum of the complex scalar field is not stable and uniform,there will be a mass term of gravitational gauge field.When gravitational gauge field propagates in this unstable vacuum of the complex scalar field,it will decays exponentially,which is the nature of gravitational shielding effects.The mechanism of gravitational shielding effects is studied in this paper,and some main properties of gravitational shielding effects are discussed.
文摘In the framework of topcolor-assisted technicolor model we calculate the contributions from the pseudo Goldstone bosons and new gauge bosons to . We find that for reasonable ranges of the parameters, the pseudo Goldstone bosons afford dominate contribution, the correction arising from new gauge bosons is negligibly small, the maximum of the relative corrections is with the center-of-mass energy ; whereas in the case of , the relative corrections could be up to 16%. Thus large new physics might be observable at the experiments of next-generation linear colliders.
文摘A new mechanism to introduce the mass of gauge field in supersymmetric gauge theory is discussed. The model has the strict local gauge symmetry and supersymmetry. Because we introduce two vector superfields simultaneously, the model contains a massive gauge field as well as a massless gauge field.
文摘The technique of integration within an ordered product of operators and the coherent-state representation are used to convert exponential operators of basis operators (P<SUP>2</SUP>, Q<SUP>2</SUP>, PQ + QP) to those of the basis operators (a<SUP>2</SUP>, a<SUP>?2</SUP>, a<SUP>?</SUP>a). The coherent state representation of unitary squeezing operators in the factorized form and their normal product form are thus derived. The squeezing engendered by operators of the general form is also obtained.
文摘Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge field, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.
文摘A manifestly gauge-invariant formulation of non-relativistic quantum mechanics is applied to the case of time-dependent harmonic oscillator in the magnetic dipole approximation. A general equation for obtaining gauge-invariant transition probability amplitudes is derived.
基金supported in part by a grant from Henan Institute of Science and Technology under Grant No.06040
文摘In the SU(3) simple group model, the new neutral gauge boson Z' couples to pairs of SM fermions with couplings fixed in terms of the SM gauge couplings and depending only on the choice of the fermion embedding. In this paper, we calculate the contributions of this new particle to the processes e^+e^-→l^+l^-, bb^-, and cc^- and study the possibility of detecting this new particle via these processes in the future high-energy linear e^+e^- collider(LC) experiments with √s= 500 GeV and £int= 340 fb^-1. We find that the new gauge boson Z' is most sensitive to the process e^+e^-→b^+b^-. As long as Mz,≤2 TeV , the absolute values of the relative correction parameter are larger than 5%. We calculate the forward-backward asymmetries and left-right asymmetries for the process e^+e^-→c^+c^-, with both the universal and anomaly-free fermion embeddings. Bounds on Z' masses are also estimated within 95% confidence level.