Aim To visualize the explosive field and design a useful and practicable software tool to analyze explosive field. Methods An ideal model of the explosive field with a protective wall, which was simulated by another...Aim To visualize the explosive field and design a useful and practicable software tool to analyze explosive field. Methods An ideal model of the explosive field with a protective wall, which was simulated by another program MMIC(multi material in cell), was brought forward. The physical data output by MMIC were changed into image data represented by DIB bitmaps through the following steps: normalizing, coding, mapping and displaying. The object oriented method was applied in programming. Results and Conclusion With the tool, the explosive field with a protective wall is visualized. The overview of explosive field and some details about the transmission of shock wave in the field, such as reflection, flow over an obstacle and Mach reflection, are shown.展开更多
In order to visualize the 3-D field of explosion and describe the complex physical phenomena of explosion, the 3-D data resulting from numerical simulation by 3-D multi-material in cell (MMIC), and the application of ...In order to visualize the 3-D field of explosion and describe the complex physical phenomena of explosion, the 3-D data resulting from numerical simulation by 3-D multi-material in cell (MMIC), and the application of volume visualization is explored, based on the characteristics of explosion and shock. Based on this, a visualization system for 3-D explosion--ViSC3D is designed. Approaches for the visualization of 3-D field of explosion are presented. The algorithm and the functions of ViSC3D are also presented. ViSC3D is thus a useful tool to observe and analyze either the full picture or the details of a 3-D field of explosion, that are difficult to observe and analyze directly. With ViSC3D, the field of explosion between the hill slopes is visualized. The cutaway views and 2-D slices are also given. The full picture and partial details of 3-D field of explosion can be observed clearly. Furthermore, ViSC3D can be used to visualize other similar 3-D data fields.展开更多
3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper,...3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.展开更多
Wireless radio spectrum is an important resource that allows for increased business development, throtigh the provision of services using wireless networking infrastructures. Since radio spectrum is limited, an optima...Wireless radio spectrum is an important resource that allows for increased business development, throtigh the provision of services using wireless networking infrastructures. Since radio spectrum is limited, an optimal utilization of it is required, by adopting advanced spectrum management methods. The current transition from analogue to digital terrestrial television may act as a unique opportunity, in order to reallocate this valuable spectrum resource. After the transition, a part of the traditional analogue television spectrum bands will be completely released, allowing for the use of this spectrum by sophisticated wireless systems. Furthermore, digital terrestrial television interleaves spectrum bands in order to avoid possible interference between adjacent channels used by broadcasting stations, thus leaving spectrum holes exploited by novel wireless networks, namely unlicensed secondary systems. In this context, this article investigates business and marketing development issues, arising by utilizing released and interleaved television spectrum bands展开更多
文摘Aim To visualize the explosive field and design a useful and practicable software tool to analyze explosive field. Methods An ideal model of the explosive field with a protective wall, which was simulated by another program MMIC(multi material in cell), was brought forward. The physical data output by MMIC were changed into image data represented by DIB bitmaps through the following steps: normalizing, coding, mapping and displaying. The object oriented method was applied in programming. Results and Conclusion With the tool, the explosive field with a protective wall is visualized. The overview of explosive field and some details about the transmission of shock wave in the field, such as reflection, flow over an obstacle and Mach reflection, are shown.
文摘In order to visualize the 3-D field of explosion and describe the complex physical phenomena of explosion, the 3-D data resulting from numerical simulation by 3-D multi-material in cell (MMIC), and the application of volume visualization is explored, based on the characteristics of explosion and shock. Based on this, a visualization system for 3-D explosion--ViSC3D is designed. Approaches for the visualization of 3-D field of explosion are presented. The algorithm and the functions of ViSC3D are also presented. ViSC3D is thus a useful tool to observe and analyze either the full picture or the details of a 3-D field of explosion, that are difficult to observe and analyze directly. With ViSC3D, the field of explosion between the hill slopes is visualized. The cutaway views and 2-D slices are also given. The full picture and partial details of 3-D field of explosion can be observed clearly. Furthermore, ViSC3D can be used to visualize other similar 3-D data fields.
文摘3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.
文摘Wireless radio spectrum is an important resource that allows for increased business development, throtigh the provision of services using wireless networking infrastructures. Since radio spectrum is limited, an optimal utilization of it is required, by adopting advanced spectrum management methods. The current transition from analogue to digital terrestrial television may act as a unique opportunity, in order to reallocate this valuable spectrum resource. After the transition, a part of the traditional analogue television spectrum bands will be completely released, allowing for the use of this spectrum by sophisticated wireless systems. Furthermore, digital terrestrial television interleaves spectrum bands in order to avoid possible interference between adjacent channels used by broadcasting stations, thus leaving spectrum holes exploited by novel wireless networks, namely unlicensed secondary systems. In this context, this article investigates business and marketing development issues, arising by utilizing released and interleaved television spectrum bands