The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduce...The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduced in coding system, which hinders practical application of MVC. An efficient fast mode decision method using mode complexity is proposed to reduce the computational complexity. In the proposed method, mode complexity is firstly computed by using the spatial, temporal and inter-view correlation between the current macroblock(MB) and its neighboring MBs. Based on the observation that direct mode is highly possible to be the optimal mode, mode complexity is always checked in advance whether it is below a predefined threshold for providing an efficient early termination opportunity. If this early termination condition is not met, three mode types for the MBs are classified according to the value of mode complexity, i.e., simple mode, medium mode and complex mode, to speed up the encoding process by reducing the number of the variable block modes required to be checked. Furthermore, for simple and medium mode region, the rate distortion(RD) cost of mode 16×16 in the temporal prediction direction is compared with that of the disparity prediction direction, to determine in advance whether the optimal prediction direction is in the temporal prediction direction or not, for skipping unnecessary disparity estimation. Experimental results show that the proposed method is able to significantly reduce the computational load by 78.79% and the total bit rate by 0.07% on average, while only incurring a negligible loss of PSNR(about 0.04 d B on average), compared with the full mode decision(FMD) in the reference software of MVC.展开更多
Moving object detection in video surveillance is an important step. This paper addresses an automatic object detection algorithm based on spatio-temporal compensation for video surveillance. Temporal difference of the...Moving object detection in video surveillance is an important step. This paper addresses an automatic object detection algorithm based on spatio-temporal compensation for video surveillance. Temporal difference of the pairs of two frames with a k-frame distance is utilized to obtain coarse object masks. Usually, object regions in these coarse masks have discontinuous boundaries and some holes. Region growing with the distance constraint is proposed to compensate these coarse object regions in spatial domain, followed by filling holes. The added distance constraint can prevent object regions from growing infinitely. The proposed filling holes method is simple and effective. To solve the temporarily stopping problem of moving objects, temporal compensation is proposed to compensate the object mask by utilizing temporal coherence of moving objects in temporal domain. The proposed detection algorithm can extract moving objects as completely as possible. Experimental results have successfully demonstrated the validity of the proposed algorithm.展开更多
基金Project(08Y29-7)supported by the Transportation Science and Research Program of Jiangsu Province,ChinaProject(201103051)supported by the Major Infrastructure Program of the Health Monitoring System Hardware Platform Based on Sensor Network Node,China+1 种基金Project(61100111)supported by the National Natural Science Foundation of ChinaProject(BE2011169)supported by the Scientific and Technical Supporting Program of Jiangsu Province,China
文摘The variable block-size motion estimation(ME) and disparity estimation(DE) are adopted in multi-view video coding(MVC) to achieve high coding efficiency. However, much higher computational complexity is also introduced in coding system, which hinders practical application of MVC. An efficient fast mode decision method using mode complexity is proposed to reduce the computational complexity. In the proposed method, mode complexity is firstly computed by using the spatial, temporal and inter-view correlation between the current macroblock(MB) and its neighboring MBs. Based on the observation that direct mode is highly possible to be the optimal mode, mode complexity is always checked in advance whether it is below a predefined threshold for providing an efficient early termination opportunity. If this early termination condition is not met, three mode types for the MBs are classified according to the value of mode complexity, i.e., simple mode, medium mode and complex mode, to speed up the encoding process by reducing the number of the variable block modes required to be checked. Furthermore, for simple and medium mode region, the rate distortion(RD) cost of mode 16×16 in the temporal prediction direction is compared with that of the disparity prediction direction, to determine in advance whether the optimal prediction direction is in the temporal prediction direction or not, for skipping unnecessary disparity estimation. Experimental results show that the proposed method is able to significantly reduce the computational load by 78.79% and the total bit rate by 0.07% on average, while only incurring a negligible loss of PSNR(about 0.04 d B on average), compared with the full mode decision(FMD) in the reference software of MVC.
基金National Natural Science Foundation of China (No.60502034)
文摘Moving object detection in video surveillance is an important step. This paper addresses an automatic object detection algorithm based on spatio-temporal compensation for video surveillance. Temporal difference of the pairs of two frames with a k-frame distance is utilized to obtain coarse object masks. Usually, object regions in these coarse masks have discontinuous boundaries and some holes. Region growing with the distance constraint is proposed to compensate these coarse object regions in spatial domain, followed by filling holes. The added distance constraint can prevent object regions from growing infinitely. The proposed filling holes method is simple and effective. To solve the temporarily stopping problem of moving objects, temporal compensation is proposed to compensate the object mask by utilizing temporal coherence of moving objects in temporal domain. The proposed detection algorithm can extract moving objects as completely as possible. Experimental results have successfully demonstrated the validity of the proposed algorithm.