Anti-ram bollards used in perimeter protection are tested to meet performance requirements of established standards such as the US Department of State Specification SD-STD-02.01. Under these standards, tests are condu...Anti-ram bollards used in perimeter protection are tested to meet performance requirements of established standards such as the US Department of State Specification SD-STD-02.01. Under these standards, tests are conducted in prescribed conditions that should be representative of the service installation. In actual project, conditions encountered on site may vary from the test environment and it would be expensive and time consuming to validate each deviation with a physical test. High-fidelity physics-based (HFPB) finite element modeling can provide precise simulations of the behavior of anti-ram bollards. This paper presents the use of HFPB finite element modeling, using LS-DYNA, in an actual project to evaluate the performance of an anti-ram bollard design subjected to various boundary conditions representing the physical conditions encountered on site. The study shows that boundary conditions can have a significant influence on the performance of the anti-ram bollards. This suggests that anti-ram bollards must be designed and engineered according to actual conditions that are found on site. It also shows that HFPB modeling can be an effective tool that supplements physical testing of anti-ram bollards.展开更多
In order to safely exploit coal resource, protection coal pillars must be prepared in coal mines. Some correlative parameters of protection coal pillar are calculated by Drop face and Drop line methods. Models of prot...In order to safely exploit coal resource, protection coal pillars must be prepared in coal mines. Some correlative parameters of protection coal pillar are calculated by Drop face and Drop line methods. Models of protecting surface objects and coal pillars are established by TIN modeling and object-oriented technique. By using ACCESS2000as the database and the VC++ and OpenGL as the language, the calculation of protective coal pillars is realized and the 3D-visulizaiton system for protected objects on ground surface and for coal pillars is developed. The system can obtain the data of characteristic points on the surface interactively from the digitized mine topography map, constructing 3D model automatically. It can also obtain the interrelated parameters of the coal seam and drill hole data from existing geolog!cal surveying database to calculate the location, surface area and the total coal columns. The whole process can be computed quickly and accurately. And the 3D visualization system was applied in a mine, showing that the system solve the problem of complex calculation, not only realized the automatic 3D mapping and visualization of coal pillars for buildings protection, but also greatly improves the working efficiency.展开更多
We present an omnidirectional vision system we have implemented to provide our mobile robot with a fast tracking and robust localization capability. An algorithm is proposed to do reconstruction of the environment fro...We present an omnidirectional vision system we have implemented to provide our mobile robot with a fast tracking and robust localization capability. An algorithm is proposed to do reconstruction of the environment from the omnidirectional image and global localization of the robot in the context of the Middle Size League RoboCup field. This is accomplished by learning a set of visual landmarks such as the goals and the corner posts. Due to the dynamic changing environment and the partially observable landmarks, four localization cases are discussed in order to get robust localization performance. Localization is performed using a method that matches the observed landmarks, i.e. color blobs, which are extracted from the environment. The advantages of the cylindrical projection are discussed giving special consideration to the characteristics of the visual landmark and the meaning of the blob extraction. The analysis is established based on real time experiments with our omnidirectional vision system and the actual mobile robot. The comparative studies are presented and the feasibility of the method is shown.展开更多
Gastric duplication cyst (GDC) lined by pseudostratified columnar ciliated epithelium (PCCE) is an uncommon lesion stemming from a foregut developmental malformation.Its clinical and radiological presentation is usual...Gastric duplication cyst (GDC) lined by pseudostratified columnar ciliated epithelium (PCCE) is an uncommon lesion stemming from a foregut developmental malformation.Its clinical and radiological presentation is usually nonspecific.In this study,we reported a 76-year-old man who presented with an incidentally found perigastric mass.An exploratory laparotomy revealed a non-communicating cyst below the gastroesophageal junction,measuring 4 cm×4 cm in size.Microscopically,the gastric cyst was lined merely by PCCE.Although rare,GDC lined by PCCE should be included in the differential diagnosis of gastric wall masses.Surgical intervention is warranted in patients who have clinical symptoms,or who are aged more than 50 years.展开更多
文摘Anti-ram bollards used in perimeter protection are tested to meet performance requirements of established standards such as the US Department of State Specification SD-STD-02.01. Under these standards, tests are conducted in prescribed conditions that should be representative of the service installation. In actual project, conditions encountered on site may vary from the test environment and it would be expensive and time consuming to validate each deviation with a physical test. High-fidelity physics-based (HFPB) finite element modeling can provide precise simulations of the behavior of anti-ram bollards. This paper presents the use of HFPB finite element modeling, using LS-DYNA, in an actual project to evaluate the performance of an anti-ram bollard design subjected to various boundary conditions representing the physical conditions encountered on site. The study shows that boundary conditions can have a significant influence on the performance of the anti-ram bollards. This suggests that anti-ram bollards must be designed and engineered according to actual conditions that are found on site. It also shows that HFPB modeling can be an effective tool that supplements physical testing of anti-ram bollards.
基金Projects 59904001 supported by National Natural Science Foundation of China
文摘In order to safely exploit coal resource, protection coal pillars must be prepared in coal mines. Some correlative parameters of protection coal pillar are calculated by Drop face and Drop line methods. Models of protecting surface objects and coal pillars are established by TIN modeling and object-oriented technique. By using ACCESS2000as the database and the VC++ and OpenGL as the language, the calculation of protective coal pillars is realized and the 3D-visulizaiton system for protected objects on ground surface and for coal pillars is developed. The system can obtain the data of characteristic points on the surface interactively from the digitized mine topography map, constructing 3D model automatically. It can also obtain the interrelated parameters of the coal seam and drill hole data from existing geolog!cal surveying database to calculate the location, surface area and the total coal columns. The whole process can be computed quickly and accurately. And the 3D visualization system was applied in a mine, showing that the system solve the problem of complex calculation, not only realized the automatic 3D mapping and visualization of coal pillars for buildings protection, but also greatly improves the working efficiency.
文摘We present an omnidirectional vision system we have implemented to provide our mobile robot with a fast tracking and robust localization capability. An algorithm is proposed to do reconstruction of the environment from the omnidirectional image and global localization of the robot in the context of the Middle Size League RoboCup field. This is accomplished by learning a set of visual landmarks such as the goals and the corner posts. Due to the dynamic changing environment and the partially observable landmarks, four localization cases are discussed in order to get robust localization performance. Localization is performed using a method that matches the observed landmarks, i.e. color blobs, which are extracted from the environment. The advantages of the cylindrical projection are discussed giving special consideration to the characteristics of the visual landmark and the meaning of the blob extraction. The analysis is established based on real time experiments with our omnidirectional vision system and the actual mobile robot. The comparative studies are presented and the feasibility of the method is shown.
文摘Gastric duplication cyst (GDC) lined by pseudostratified columnar ciliated epithelium (PCCE) is an uncommon lesion stemming from a foregut developmental malformation.Its clinical and radiological presentation is usually nonspecific.In this study,we reported a 76-year-old man who presented with an incidentally found perigastric mass.An exploratory laparotomy revealed a non-communicating cyst below the gastroesophageal junction,measuring 4 cm×4 cm in size.Microscopically,the gastric cyst was lined merely by PCCE.Although rare,GDC lined by PCCE should be included in the differential diagnosis of gastric wall masses.Surgical intervention is warranted in patients who have clinical symptoms,or who are aged more than 50 years.