An automated multi-range multipliers(range resistors)system is established for the AC voltage measurements by using a thermal voltage converter.It is performed automatically by selecting the appropriate multiplier w...An automated multi-range multipliers(range resistors)system is established for the AC voltage measurements by using a thermal voltage converter.It is performed automatically by selecting the appropriate multiplier whose voltage range contains the voltage to be measured without changing it manually through a new designed system.It consists of control part through a micro-controller controlled by specified prepared Lab-VIEW program and switching part through electronic relays in one circuit as clearly described in this work.It is used for measuring the ac voltage in the range from 1 V to 200 V.Also,it can be used for the voltage ranges up to 1 000 V by putting some factors into consideration.The AC-DC transfer differences for these multipliers combined with thermal voltage converter are determined automatically against another standard thermal voltage converter by using another Lab-VIEW program.展开更多
Abstract: The current measuring principle, the hardware structure and the software functions of a high voltage breaker current monitoring and fault diagnosis system are introduced. A simple algorithm for calculating t...Abstract: The current measuring principle, the hardware structure and the software functions of a high voltage breaker current monitoring and fault diagnosis system are introduced. A simple algorithm for calculating the current effective value is given. The cut - off characteristics of the breaker are classified. This system can provide a foundation for reasonably determining the breaker service period.展开更多
In this paper, the characteristics of a pressure wave propagating against two parallel subsonic streams in a constant-area straight duct are investigated by one-dimensional analysis, two-dimensional numerical simulati...In this paper, the characteristics of a pressure wave propagating against two parallel subsonic streams in a constant-area straight duct are investigated by one-dimensional analysis, two-dimensional numerical simulation, and experiments. Computations have been carried out by the two-dimensional Euler Equations using the Chakravarthy-Osher-type TVD scheme. Optical observations by the schlieren method as well as wall pressure measurements have been performed to clarify both the structure and the propagation velocity of pressure waves. The results show that the pressure wave propagating against the streams changes into a bifurcated pressure wave and the bifurcation occurs in the low speed streams. It is also found that the propagation velocity of the pressure wave obtained by the analysis and computation agrees well with the present experimental data.展开更多
In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube(VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at ...In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube(VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.展开更多
文摘An automated multi-range multipliers(range resistors)system is established for the AC voltage measurements by using a thermal voltage converter.It is performed automatically by selecting the appropriate multiplier whose voltage range contains the voltage to be measured without changing it manually through a new designed system.It consists of control part through a micro-controller controlled by specified prepared Lab-VIEW program and switching part through electronic relays in one circuit as clearly described in this work.It is used for measuring the ac voltage in the range from 1 V to 200 V.Also,it can be used for the voltage ranges up to 1 000 V by putting some factors into consideration.The AC-DC transfer differences for these multipliers combined with thermal voltage converter are determined automatically against another standard thermal voltage converter by using another Lab-VIEW program.
文摘Abstract: The current measuring principle, the hardware structure and the software functions of a high voltage breaker current monitoring and fault diagnosis system are introduced. A simple algorithm for calculating the current effective value is given. The cut - off characteristics of the breaker are classified. This system can provide a foundation for reasonably determining the breaker service period.
文摘In this paper, the characteristics of a pressure wave propagating against two parallel subsonic streams in a constant-area straight duct are investigated by one-dimensional analysis, two-dimensional numerical simulation, and experiments. Computations have been carried out by the two-dimensional Euler Equations using the Chakravarthy-Osher-type TVD scheme. Optical observations by the schlieren method as well as wall pressure measurements have been performed to clarify both the structure and the propagation velocity of pressure waves. The results show that the pressure wave propagating against the streams changes into a bifurcated pressure wave and the bifurcation occurs in the low speed streams. It is also found that the propagation velocity of the pressure wave obtained by the analysis and computation agrees well with the present experimental data.
文摘In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube(VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.