Objective A few investigations have been reported about pretectal suppressive influences on the optic tectum of frog, but characteristics of tectal activity to pretectal input are left unknown. We made intracellular r...Objective A few investigations have been reported about pretectal suppressive influences on the optic tectum of frog, but characteristics of tectal activity to pretectal input are left unknown. We made intracellular recordings to demonstrate the unexpected complexity in synaptic mechanisms involved in the suppressive influences of pretecal stimulation on the tectal cells. Methods In the present study, we investigated the neuronal activity evoked by pretectal (Lpd/P) nuclei stimulation using intracellular recording technique. Results The pretectal stimulation mainly elicited two types of responses in the ipsilateral tectum: an excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP) and a pure IPSP. The latter predominated in the tectal cells responding to pretectal stimulation. In a few cells, biphasic hyperpolarization appeared under stronger stimulus intensities. The spikes of tecto-pretectal projecting cells elicited by antidromical stimulation were recorded in the ipsilateral tectum, which revealed reciprocal connections between the tectum and particular pretectal nuclei. The synaptic natures underlying pretecto-tectal information transformation have also been demonstrated. EPSPs with short latencies were concluded to be monosynaptic. Most IPSPs were generated through polysynaptic paths, but monosynaptic IPSPs were also recorded in the tectum. Nearly 98% of impaled tectal cells (except for antidromically projecting cells) showed inhibitory responses to pretectal stimulation. Conclusion The results provide strong evidence that pretectal cells broadly inhibit tectal neurons as that has suggested by behavioral and extracellular recording studies.展开更多
文摘Objective A few investigations have been reported about pretectal suppressive influences on the optic tectum of frog, but characteristics of tectal activity to pretectal input are left unknown. We made intracellular recordings to demonstrate the unexpected complexity in synaptic mechanisms involved in the suppressive influences of pretecal stimulation on the tectal cells. Methods In the present study, we investigated the neuronal activity evoked by pretectal (Lpd/P) nuclei stimulation using intracellular recording technique. Results The pretectal stimulation mainly elicited two types of responses in the ipsilateral tectum: an excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP) and a pure IPSP. The latter predominated in the tectal cells responding to pretectal stimulation. In a few cells, biphasic hyperpolarization appeared under stronger stimulus intensities. The spikes of tecto-pretectal projecting cells elicited by antidromical stimulation were recorded in the ipsilateral tectum, which revealed reciprocal connections between the tectum and particular pretectal nuclei. The synaptic natures underlying pretecto-tectal information transformation have also been demonstrated. EPSPs with short latencies were concluded to be monosynaptic. Most IPSPs were generated through polysynaptic paths, but monosynaptic IPSPs were also recorded in the tectum. Nearly 98% of impaled tectal cells (except for antidromically projecting cells) showed inhibitory responses to pretectal stimulation. Conclusion The results provide strong evidence that pretectal cells broadly inhibit tectal neurons as that has suggested by behavioral and extracellular recording studies.