期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于迁移学习和卷积视觉转换器的农作物病害识别研究
1
作者 余胜 谢莉 《中国农机化学报》 北大核心 2023年第8期191-197,共7页
农作物病虫害对粮食生产和质量都有很大影响。针对当前传统的农作物病害识别过程中主要依赖人工特征提取,且真实环境下采集的病害图像样本数目较少,识别方法鲁棒性差、分类准确率偏低等问题,基于迁移学习提出了以卷积操作预处理图像子... 农作物病虫害对粮食生产和质量都有很大影响。针对当前传统的农作物病害识别过程中主要依赖人工特征提取,且真实环境下采集的病害图像样本数目较少,识别方法鲁棒性差、分类准确率偏低等问题,基于迁移学习提出了以卷积操作预处理图像子块的视觉转换器(Vision Transformer,ViT)模型用于农作物病害识别。在ViT模型结构的基础上引入卷积操作对输入图像进行预处理,卷积操作能提高获取底层特征的丰富度,进而在ViT学习过程中通过多头注意力机制,加大有用特征的权重,削弱噪声等无用信息的影响,达到模型提高特征学习能力并增强鲁棒性的目的。试验结果表明,利用迁移学习方法在ibean数据集上能够提升模型的识别准确率10%以上;模型最终在ibean数据集上识别准确率为98.12%,约有2%的提高,在PlantVillage数据集识别准确率为99.91%,都达到了当前最佳识别水平。提出的识别方法在复杂背景干扰下具有较高的识别准确率和鲁棒性,可以满足自然条件下的农作物病害识别的要求。 展开更多
关键词 迁移学习 卷积视觉转换器 病害识别 注意力机制
下载PDF
基于双分支编码的闭环分割网络
2
作者 任玉涛 程远志 《计算机系统应用》 2024年第1期110-118,共9页
Transformer模型中,卷积视觉转换器(CvT)具备同时提取图像的局部和全局特征的能力而受到关注.对于腹部器官分割问题,为了解决CNN模型分割目标边界轮廓模糊不清的问题,提出了一种新颖的基于CvT和CNN的双分支闭环分割模型DBLNet.模型利用... Transformer模型中,卷积视觉转换器(CvT)具备同时提取图像的局部和全局特征的能力而受到关注.对于腹部器官分割问题,为了解决CNN模型分割目标边界轮廓模糊不清的问题,提出了一种新颖的基于CvT和CNN的双分支闭环分割模型DBLNet.模型利用形状先验和预测结果的分割轮廓显式监督并指导网络学习过程.模型包括:轮廓提取编码模块(CEE)、边界形状分割网络(BSSN)和闭环结构.CEE模块首次利用改造的3D CvT和3D门控卷积层(GCL)捕获多层级轮廓特征,并辅助BSSN训练.BSSN模块设计形状特征融合模块(SFF)同时捕获目标区域和轮廓特征,推动CEE训练拟合.闭环结构使得双分支的分割结果互相反馈并辅助对方的训练.DBLNet在BTCV排行榜上测试,平均Dice得分为0.878,排名第13位;在临床医院数据进行应用测试,表现出强大的性能. 展开更多
关键词 腹部器官 边缘轮廓 双分支编码器 闭环结构 卷积视觉转换器 医学影像处理 特征融合 图像分割
下载PDF
基于卷积神经网络的垃圾分类系统的研究 被引量:7
3
作者 汪洋 王小妮 +3 位作者 王育新 刘畅 熊继伟 韩定良 《传感器世界》 2020年第8期19-25,4,5,共9页
近些年来,我国各地陆续出台了垃圾分类的政策,垃圾分类也己经逐步成为了一种新的生活方式。但是垃圾分类又存在着分类效率低、分类成本高等问题。针对这些问题提出了—种基于卷积神经网络的垃圾分类系统。通过软硬件相结合的方式实现了... 近些年来,我国各地陆续出台了垃圾分类的政策,垃圾分类也己经逐步成为了一种新的生活方式。但是垃圾分类又存在着分类效率低、分类成本高等问题。针对这些问题提出了—种基于卷积神经网络的垃圾分类系统。通过软硬件相结合的方式实现了垃圾投放检测、垃圾种类识别、垃圾精确投放、结果反馈等功能。对于日常生活垃圾的识别率已达91.7%以上,具有识别率高、分类速度快、方便迭代更新、成本低等优点。 展开更多
关键词 垃圾分类 机器视觉:卷积神经网络:深度学习
下载PDF
多尺度时空特征融合的动态手势识别网络 被引量:1
4
作者 刘杰 王月 田明 《电子与信息学报》 EI CSCD 北大核心 2023年第7期2614-2622,共9页
由于动态手势数据具有时间复杂性以及空间复杂性,传统的机器学习算法难以提取准确的手势特征;现有的动态手势识别算法网络设计复杂、参数量大、手势特征提取不充分。为解决以上问题,该文提出一种基于卷积视觉自注意力模型(CvT)的多尺度... 由于动态手势数据具有时间复杂性以及空间复杂性,传统的机器学习算法难以提取准确的手势特征;现有的动态手势识别算法网络设计复杂、参数量大、手势特征提取不充分。为解决以上问题,该文提出一种基于卷积视觉自注意力模型(CvT)的多尺度时空特征融合网络。首先,将图片分类领域的CvT网络引入动态手势分类领域,用于提取单张手势图片的空间特征,将不同空间尺度的浅层特征与深层特征融合。其次,设计一种多时间尺度聚合模块,提取动态手势的时空特征,将CvT网络与多时间尺度聚合模块结合,抑制无效特征。最后为了弥补CvT网络中dropout层的不足,将R-Drop模型应用于多尺度时空特征融合网络。在Jester数据集上进行实验验证,与多种基于深度学习的动态手势识别方法进行对比,实验结果表明,该文方法在识别率上优于现有动态手势识别方法,在动态手势数据集Jester上识别率达到92.26%。 展开更多
关键词 动态手势识别 深度学习 卷积视觉自注意力模型 多尺度融合
下载PDF
基于敏感模态流形的变转速故障诊断方法
5
作者 郝德琛 李华玲 黄晋英 《组合机床与自动化加工技术》 北大核心 2023年第8期108-112,117,共6页
针对旋转机械变转速和复杂工况多分类问题,提出了一种基于构建改进敏感模态矩阵(ISMM)、等度量映射(ISOMAP)和convolution-vision transformer(CVT)网络结构的故障诊断方法。将变转速信号重叠采样之后构造高维ISMM,通过ISOMAP流形学习将... 针对旋转机械变转速和复杂工况多分类问题,提出了一种基于构建改进敏感模态矩阵(ISMM)、等度量映射(ISOMAP)和convolution-vision transformer(CVT)网络结构的故障诊断方法。将变转速信号重叠采样之后构造高维ISMM,通过ISOMAP流形学习将ISMM映射到流形空间中,提取变转速信号的故障瞬态特征,实验证明能够很好地解决了常规方法无法对变转速数据进行有效特征提取的问题。结合自注意力机制和CNN的优点,使用CVT网络结构进行特征提取、故障识别分类。通过实验室HFXZ-Ⅰ行星齿轮箱变转速数据集对提出的故障诊断模型进行实验验证。实验结果表明,提出的故障诊断模型具有良好的识别准确率及鲁棒性。 展开更多
关键词 卷积视觉变换器(CVT) 流形学习 敏感模态矩阵 旋转机械变转速 故障诊断
下载PDF
融合关系特征的半监督图像分类方法研究 被引量:1
6
作者 刘威 王薪予 +2 位作者 刘光伟 王东 牛英杰 《智能系统学报》 CSCD 北大核心 2022年第5期886-899,共14页
半监督深度学习模型具有泛化能力强,所需样本数较少等特点,经过10多年的发展,在理论和实际应用方面都取得了巨大的进步,然而建模样本内部“隐含”关系时模型缺乏解释性以及构造无监督正则化项难度较大等问题限制了半监督深度学习的进一... 半监督深度学习模型具有泛化能力强,所需样本数较少等特点,经过10多年的发展,在理论和实际应用方面都取得了巨大的进步,然而建模样本内部“隐含”关系时模型缺乏解释性以及构造无监督正则化项难度较大等问题限制了半监督深度学习的进一步发展。针对上述问题,从丰富样本特征表示的角度出发,构造了一种新的半监督图像分类模型—融合关系特征的半监督分类模型(semi-supervised classification model fused with relational features,SCUTTLE),该模型在卷积神经网络模型(convolutional neural networks,CNN)基础上引入了图卷积神经网络(graph convolutional networks,GCN),尝试通过GCN模型来提取CNN模型各层的低、高级特征间的关系,使得融合模型不仅具有特征提取能力,而且具有关系表示能力。通过对SCUTTLE模型泛化性能进行分析,进一步说明了该模型在解决半监督相关问题时的有效性。数值实验结果表明,三层CNN与一层GCN的融合模型在CIFAR10、CIFAR100、SVHN 3种数据集上与CNN监督学习模型的精度相比均可提升5%~6%的精度值,在最先进的ResNet、DenseNet、WRN(wide residual networks)与GCN的融合模型上同样证明了本文所提模型的有效性。 展开更多
关键词 关系表示 特征提取 卷积神经网络 融合模型 半监督学习 图像分类 视觉卷积 泛化性能
下载PDF
A method for workpiece surface small-defect detection based on CutMix and YOLOv3 被引量:6
7
作者 Xing Junjie Jia Minping +1 位作者 Xu Feiyun Hu Jianzhong 《Journal of Southeast University(English Edition)》 EI CAS 2021年第2期128-136,共9页
Surface small defects are often missed and incorrectly detected due to their small quantity and unapparent visual features.A method named CSYOLOv3,which is based on CutMix and YOLOv3,is proposed to solve such a proble... Surface small defects are often missed and incorrectly detected due to their small quantity and unapparent visual features.A method named CSYOLOv3,which is based on CutMix and YOLOv3,is proposed to solve such a problem.First,a four-image CutMix method is used to increase the small-defect quantity,and the process is dynamically adjusted based on the beta distribution.Then,the classic YOLOv3 is improved to detect small defects accurately.The shallow and large feature maps are split,and several of them are merged with the feature maps of the predicted branch to preserve the shallow features.The loss function of YOLOv3 is optimized and weighted to improve the attention to small defects.Finally,this method is used to detect 512×512 pixel images under RTX 2060Ti GPU,which can reach the speed of 14.09 frame/s,and the mAP is 71.80%,which is 5%-10%higher than that of other methods.For small defects below 64×64 pixels,the mAP of the method reaches 64.15%,which is 14%higher than that of YOLOv3-GIoU.The surface defects of the workpiece can be effectively detected by the proposed method,and the performance in detecting small defects is significantly improved. 展开更多
关键词 machine vision image recognition deep convolutional neural network defect detection
下载PDF
Neighborhood fusion-based hierarchical parallel feature pyramid network for object detection 被引量:3
8
作者 Mo Lingfei Hu Shuming 《Journal of Southeast University(English Edition)》 EI CAS 2020年第3期252-263,共12页
In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid... In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy. 展开更多
关键词 computer vision deep convolutional neural network object detection hierarchical parallel feature pyramid network multi-scale feature fusion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部