针对基于混合米制地图机器人同步定位与地图创建(Simultaneous localization and mapping,SLAM)中地图划分方法不完善的问题,提出了基于Voronoi地图表示方法的同步定位与地图创建算法VorSLAM.该算法在全局坐标系下创建特征地图,并根据...针对基于混合米制地图机器人同步定位与地图创建(Simultaneous localization and mapping,SLAM)中地图划分方法不完善的问题,提出了基于Voronoi地图表示方法的同步定位与地图创建算法VorSLAM.该算法在全局坐标系下创建特征地图,并根据此特征地图使用Voronoi图唯一地划分地图空间,在每一个划分内部创建一个相对于特征的局部稠密地图.特征地图与各个局部地图最终一起连续稠密地描述了环境.Voronoi地图表示方法解决了地图划分的唯一性问题,理论证明局部地图可以完整描述该划分所对应的环境轮廓.该地图表示方法一个基本特点是特征与局部地图一一对应,每个特征都关联一个定义在该特征上的局部地图.基于该特点,提出了一个基于形状匹配的数据关联算法,用以解决传统数据关联算法出现的多重关联问题.一个公寓弧形走廊的实验验证了VorSLAM算法和基于形状匹配的数据关联方法的有效性.展开更多
同时定位与地图创建(simultaneous localization and mapping,SLAM)自1986年提出以来一直是机器人领域的热点问题,被认为是实现真正全自主移动机器人的关键。其目的是让机器人在未知环境下实现自身定位同时创建出环境地图。视觉SLAM(vis...同时定位与地图创建(simultaneous localization and mapping,SLAM)自1986年提出以来一直是机器人领域的热点问题,被认为是实现真正全自主移动机器人的关键。其目的是让机器人在未知环境下实现自身定位同时创建出环境地图。视觉SLAM(visual simultaneous localization and mapping,VSLAM)是仅用相机作为传感器的定位与制图。随着计算机视觉和机器人技术的发展,VSLAM已成为无人系统领域的研究焦点。本文对VSLAM的最新研究现状进行总结,阐述了VSLAM中的主要问题,分别介绍了VSLAM基于滤波和图优化的实现方法,并探讨了VSLAM的研究与发展方向。展开更多
随着移动机器人技术不断发展,里程计技术已经成为移动机器人实现环境感知的关键技术,其发展水平对提高机器人的自主化和智能化具有重要意义。首先,系统阐述了同步定位与地图构建(Simultaneous localization and mapping,SLAM)中激光SLA...随着移动机器人技术不断发展,里程计技术已经成为移动机器人实现环境感知的关键技术,其发展水平对提高机器人的自主化和智能化具有重要意义。首先,系统阐述了同步定位与地图构建(Simultaneous localization and mapping,SLAM)中激光SLAM和视觉SLAM的发展近况,阐述了经典SLAM框架及其数学描述,简要介绍了3类常见相机的相机模型及其视觉里程计的数学描述。其次,分别对传统视觉里程计和深度学习里程计的研究进展进行系统阐述。对比分析了近10年来各类里程计算法的优势与不足。另外,对比分析了7种常用数据集的性能。最后,从精度、鲁棒性、数据集、多模态等方面总结了里程计技术面临的问题,从提高算法实时性、鲁棒性等方面展望了视觉里程计的发展趋势为:更加智能化、小型化新型传感器的发展;与无监督学习融合;语义表达技术的提高;集群机器人协同技术的发展。展开更多
文摘针对基于混合米制地图机器人同步定位与地图创建(Simultaneous localization and mapping,SLAM)中地图划分方法不完善的问题,提出了基于Voronoi地图表示方法的同步定位与地图创建算法VorSLAM.该算法在全局坐标系下创建特征地图,并根据此特征地图使用Voronoi图唯一地划分地图空间,在每一个划分内部创建一个相对于特征的局部稠密地图.特征地图与各个局部地图最终一起连续稠密地描述了环境.Voronoi地图表示方法解决了地图划分的唯一性问题,理论证明局部地图可以完整描述该划分所对应的环境轮廓.该地图表示方法一个基本特点是特征与局部地图一一对应,每个特征都关联一个定义在该特征上的局部地图.基于该特点,提出了一个基于形状匹配的数据关联算法,用以解决传统数据关联算法出现的多重关联问题.一个公寓弧形走廊的实验验证了VorSLAM算法和基于形状匹配的数据关联方法的有效性.
文摘同时定位与地图创建(simultaneous localization and mapping,SLAM)自1986年提出以来一直是机器人领域的热点问题,被认为是实现真正全自主移动机器人的关键。其目的是让机器人在未知环境下实现自身定位同时创建出环境地图。视觉SLAM(visual simultaneous localization and mapping,VSLAM)是仅用相机作为传感器的定位与制图。随着计算机视觉和机器人技术的发展,VSLAM已成为无人系统领域的研究焦点。本文对VSLAM的最新研究现状进行总结,阐述了VSLAM中的主要问题,分别介绍了VSLAM基于滤波和图优化的实现方法,并探讨了VSLAM的研究与发展方向。
文摘随着移动机器人技术不断发展,里程计技术已经成为移动机器人实现环境感知的关键技术,其发展水平对提高机器人的自主化和智能化具有重要意义。首先,系统阐述了同步定位与地图构建(Simultaneous localization and mapping,SLAM)中激光SLAM和视觉SLAM的发展近况,阐述了经典SLAM框架及其数学描述,简要介绍了3类常见相机的相机模型及其视觉里程计的数学描述。其次,分别对传统视觉里程计和深度学习里程计的研究进展进行系统阐述。对比分析了近10年来各类里程计算法的优势与不足。另外,对比分析了7种常用数据集的性能。最后,从精度、鲁棒性、数据集、多模态等方面总结了里程计技术面临的问题,从提高算法实时性、鲁棒性等方面展望了视觉里程计的发展趋势为:更加智能化、小型化新型传感器的发展;与无监督学习融合;语义表达技术的提高;集群机器人协同技术的发展。