期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
有价票据视觉复检自动化包装系统设计 被引量:1
1
作者 赵鹏 田军委 《包装工程》 CAS 北大核心 2017年第15期82-86,共5页
目的针对现有有价票据包装工艺中自动化程度低、人力成本高、分包效率低、出错率高的现象,设计一套视觉复检自动化分包系统。方法采用自动分拣机构实现票据高速分机和整理,并通过视觉检测技术检测票据编码的正确性;利用双工位机械臂和... 目的针对现有有价票据包装工艺中自动化程度低、人力成本高、分包效率低、出错率高的现象,设计一套视觉复检自动化分包系统。方法采用自动分拣机构实现票据高速分机和整理,并通过视觉检测技术检测票据编码的正确性;利用双工位机械臂和包扎机构实现快速包扎和整理。结果所设计系统分拣速度达800张/min,工作节拍可达80捆/min,最大限度地提高了系统工作效率。结论该设计为各类票据高速、高效包装系统的实现提供了参考。 展开更多
关键词 有价票据 视觉复检 包装机械
下载PDF
Automated visual inspection of surface defects based on compound moment invariants and support vector machine 被引量:1
2
作者 Zhang Xuewu Xu Lizhong +1 位作者 Ding Yanqiong Fan Xinnan 《High Technology Letters》 EI CAS 2012年第1期26-32,共7页
The traditional inspection methods are mostly based on manual inspection which is very likely to make erroneous judgments due to personal subjectivity or eye fatigue, and can't satisfy the accuracy. To overcome these... The traditional inspection methods are mostly based on manual inspection which is very likely to make erroneous judgments due to personal subjectivity or eye fatigue, and can't satisfy the accuracy. To overcome these difficulties, we develop a machine vision inspection system. We first compare several kinds of methods for feature extraction and classification, and then present a real-time automated visual inspection system for copper strips surface (CSS) defects based on compound moment invariants and support vector machine (SVM). The proposed method first processes images collected by hardware system, and then extracts feature characteristics based on grayscale characteristics and morphologic characteristics (Hu and Zernike compound moment invariants). Finally, we use SVM to classify the CSS defects. Furthermore, performance comparisons among SVM, back propagation (BP) and radial basis function (RBF) neural networks have been involved. Experimental results show that the proposed approach achieves an accuracy of 95.8% in detecting CSS defects. 展开更多
关键词 copper strips surface (CSS) defects compound invariant moments support vector machine(SVM) visual inspection system neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部