The methods of visual recognition,positioning and orienting with simple 3 D geometric workpieces are presented in this paper.The principle and operating process of multiple orientation run le...The methods of visual recognition,positioning and orienting with simple 3 D geometric workpieces are presented in this paper.The principle and operating process of multiple orientation run length coding based on general orientation run length coding and visual recognition method are described elaborately.The method of positioning and orientating based on the moment of inertia of the workpiece binary image is stated also.It has been applied in a research on flexible automatic coordinate measuring system formed by integrating computer aided design,computer vision and computer aided inspection planning,with a coordinate measuring machine.The results show that integrating computer vision with measurement system is a feasible and effective approach to improve their flexibility and automation.展开更多
This paper presents a practical iterative algorithm for two-view metric reconstruction without any prior knowledge about the scene and motion in a nonsingular geometry configuration. The principal point is assumed to ...This paper presents a practical iterative algorithm for two-view metric reconstruction without any prior knowledge about the scene and motion in a nonsingular geometry configuration. The principal point is assumed to locate at the image center with zero skew and the same aspect ratio, and the interior parameters are fixed, so the self-calibration becomes focal-length cali- bration. Existing focal length calibration methods are direct solutions of a quadric composed of fundamental matrix, which are sensitive to noise. A quaternion-based linear iterative Least-Square Method is proposed in this paper, and one-dimensional searching for optimal focal length in a constrained region instead of solving optimization problems with inequality constraints is applied to simplify the computation complexity, then unique rotational matrix and translate vector are recovered. Experiments with simulation data and real images are given to verify the algorithm.展开更多
The non-Markov process exists widely in thermodymanic process,while it usually requires the packing of many transistors and memories with great system complexity in a traditional device structure to minic such functio...The non-Markov process exists widely in thermodymanic process,while it usually requires the packing of many transistors and memories with great system complexity in a traditional device structure to minic such functions.Two-dimensional(2D)material-based resistive random access memory(RRAM)devices have the potential for next-generation computing systems with much-reduced complexity.Here,we achieve a non-Markov chain in an individual RRAM device based on 2D mineral material mica with a vertical metal/mica/metal structure.We find that the potassium ions(K+)in 2D mica gradually move in the direction of the applied electric field,making the initially insulating mica conductive.The accumulation of K+is changed by an electric field,and the 2D-mica RRAM has both single and double memory windows,a high on/off ratio,decent stability,and repeatability.This is the first time a non-Markov chain process has been established in a single RRAM,in which the movement of K+is dependent on the stimulated voltage as well as their past states.This work not only uncovers an intrinsic inner ionic conductivity of 2D mica,but also opens the door for the production of such RRAM devices with numerous functions and applications.展开更多
文摘The methods of visual recognition,positioning and orienting with simple 3 D geometric workpieces are presented in this paper.The principle and operating process of multiple orientation run length coding based on general orientation run length coding and visual recognition method are described elaborately.The method of positioning and orientating based on the moment of inertia of the workpiece binary image is stated also.It has been applied in a research on flexible automatic coordinate measuring system formed by integrating computer aided design,computer vision and computer aided inspection planning,with a coordinate measuring machine.The results show that integrating computer vision with measurement system is a feasible and effective approach to improve their flexibility and automation.
文摘This paper presents a practical iterative algorithm for two-view metric reconstruction without any prior knowledge about the scene and motion in a nonsingular geometry configuration. The principal point is assumed to locate at the image center with zero skew and the same aspect ratio, and the interior parameters are fixed, so the self-calibration becomes focal-length cali- bration. Existing focal length calibration methods are direct solutions of a quadric composed of fundamental matrix, which are sensitive to noise. A quaternion-based linear iterative Least-Square Method is proposed in this paper, and one-dimensional searching for optimal focal length in a constrained region instead of solving optimization problems with inequality constraints is applied to simplify the computation complexity, then unique rotational matrix and translate vector are recovered. Experiments with simulation data and real images are given to verify the algorithm.
基金This work was supported by the National Natural Science Foundation of China(51920105002,51991340,51722206,and 51991343)Guangdong Innovative and Entrepreneurial Research Team Program(2017ZT07C341)+1 种基金the Bureau of Industry and Information Technology of Shenzhen for the“2017 Graphene Manufacturing Innovation Center Project”(201901171523)the Shenzhen Basic Research Program(JCYJ20200109144620815 and JCYJ20200109144616617).
文摘The non-Markov process exists widely in thermodymanic process,while it usually requires the packing of many transistors and memories with great system complexity in a traditional device structure to minic such functions.Two-dimensional(2D)material-based resistive random access memory(RRAM)devices have the potential for next-generation computing systems with much-reduced complexity.Here,we achieve a non-Markov chain in an individual RRAM device based on 2D mineral material mica with a vertical metal/mica/metal structure.We find that the potassium ions(K+)in 2D mica gradually move in the direction of the applied electric field,making the initially insulating mica conductive.The accumulation of K+is changed by an electric field,and the 2D-mica RRAM has both single and double memory windows,a high on/off ratio,decent stability,and repeatability.This is the first time a non-Markov chain process has been established in a single RRAM,in which the movement of K+is dependent on the stimulated voltage as well as their past states.This work not only uncovers an intrinsic inner ionic conductivity of 2D mica,but also opens the door for the production of such RRAM devices with numerous functions and applications.