同时定位与地图构建(simultaneous localization and mapping,SLAM)作为计算机视觉中的热门方向,在无人驾驶、移动机器人等领域中发挥着重要的作用。由于线特征在低纹理环境下的优势,越来越多的研究人员利用点线特征融合的方法提高SLAM...同时定位与地图构建(simultaneous localization and mapping,SLAM)作为计算机视觉中的热门方向,在无人驾驶、移动机器人等领域中发挥着重要的作用。由于线特征在低纹理环境下的优势,越来越多的研究人员利用点线特征融合的方法提高SLAM系统的精度和鲁棒性。文中首先简要阐述了传统的点特征SLAM系统在低纹理环境下的局限性,并对现有的视觉SLAM综述文献进行了总结;随后,对经典的点线SLAM方案进行了介绍,并总结了点线特征融合在前端、后端、闭环检测中的研究进展;最后,对点线SLAM未来的发展方向进行了展望。展开更多
单目视觉惯性同步定位与地图构建(visual-inertial simultaneous localization and mapping,VI-SLAM)技术因具有硬件成本低、无需对外部环境进行布置等优点,得到了广泛关注,在过去的十多年里取得了长足的进步,涌现出诸多优秀的方法和系...单目视觉惯性同步定位与地图构建(visual-inertial simultaneous localization and mapping,VI-SLAM)技术因具有硬件成本低、无需对外部环境进行布置等优点,得到了广泛关注,在过去的十多年里取得了长足的进步,涌现出诸多优秀的方法和系统。由于实际场景的复杂性,不同方法难免有各自的局限性。虽然已经有一些工作对VISLAM方法进行了综述和评测,但大多只针对经典的VI-SLAM方法,已不能充分反映最新的VI-SLAM技术发展现状。本文首先对基于单目VI-SLAM方法的基本原理进行阐述,然后对单目VI-SLAM方法进行分类分析。为了综合全面地对比不同方法之间的优劣势,本文特别选取3个公开数据集对代表性的单目VI-SLAM方法从多个维度上进行定量评测,全面系统地分析了各类方法在实际场景尤其是增强现实应用场景中的性能。实验结果表明,基于优化或滤波和优化相结合的方法一般在跟踪精度和鲁棒性上比基于滤波的方法有优势,直接法/半直接法在全局快门拍摄的情况下精度较高,但容易受卷帘快门和光照变化的影响,尤其是大场景下误差累积较快;结合深度学习可以提高极端情况下的鲁棒性。最后,针对深度学习与V-SLAM/VI-SLAM结合、多传感器融合以及端云协同这3个研究热点,对SLAM的发展趋势进行讨论和展望。展开更多
随着移动机器人技术不断发展,里程计技术已经成为移动机器人实现环境感知的关键技术,其发展水平对提高机器人的自主化和智能化具有重要意义。首先,系统阐述了同步定位与地图构建(Simultaneous localization and mapping,SLAM)中激光SLA...随着移动机器人技术不断发展,里程计技术已经成为移动机器人实现环境感知的关键技术,其发展水平对提高机器人的自主化和智能化具有重要意义。首先,系统阐述了同步定位与地图构建(Simultaneous localization and mapping,SLAM)中激光SLAM和视觉SLAM的发展近况,阐述了经典SLAM框架及其数学描述,简要介绍了3类常见相机的相机模型及其视觉里程计的数学描述。其次,分别对传统视觉里程计和深度学习里程计的研究进展进行系统阐述。对比分析了近10年来各类里程计算法的优势与不足。另外,对比分析了7种常用数据集的性能。最后,从精度、鲁棒性、数据集、多模态等方面总结了里程计技术面临的问题,从提高算法实时性、鲁棒性等方面展望了视觉里程计的发展趋势为:更加智能化、小型化新型传感器的发展;与无监督学习融合;语义表达技术的提高;集群机器人协同技术的发展。展开更多
为提高视觉-惯性导航系统在弱纹理环境下的鲁棒性和精度,结合特征点法精度高和光流法速度快的特点以及惯性信息,提出一种多尺度均匀化光流融合特征点法的视觉-惯性同时定位与地图(simultaneous localization and mapping, SLAM)构建方...为提高视觉-惯性导航系统在弱纹理环境下的鲁棒性和精度,结合特征点法精度高和光流法速度快的特点以及惯性信息,提出一种多尺度均匀化光流融合特征点法的视觉-惯性同时定位与地图(simultaneous localization and mapping, SLAM)构建方法。首先,改进快速特征点提取和描述(oriented fast and rotated brief, ORB)特征提取过程,采用多尺度网格化的方法提取ORB特征点并利用四叉树均匀分配特征点,提高特征分布离散性。其次,在帧间采用LK(Lucas and Kanade)光流法追踪特征点进行帧间的数据关联,在关键帧对特征点进行描述子的计算和匹配从而实现关键帧间的数据关联,保证算法速度的同时提高定位精度和鲁棒性。最后,基于光流法建立的数据关联得到的初始位姿为后端优化提供初始值,整合ORB特征点重投影误差、惯性测量单元(inertial measurement unit, IMU)预积分误差以及滑动窗口先验误差构建最小化目标函数采用滑动窗口非线性优化进行求解。实验表明,所提方法相比单目视觉惯性系统具有更高的定位精度和鲁棒性,定位精度平均提升16.7%。展开更多
针对传统视觉同步定位与地图构建(SLAM)算法在动态场景下定位精度低的问题,提出了一种基于动态目标检测的视觉SLAM算法。首先,在视觉SLAM系统的前端对输入图像帧进行预处理,通过目标检测网络YOLO v3(You only look once,v3)剔除图像潜...针对传统视觉同步定位与地图构建(SLAM)算法在动态场景下定位精度低的问题,提出了一种基于动态目标检测的视觉SLAM算法。首先,在视觉SLAM系统的前端对输入图像帧进行预处理,通过目标检测网络YOLO v3(You only look once,v3)剔除图像潜在的动态区域。然后,通过重投影误差优化单应性矩阵,通过求解运动补偿帧得到四帧差分图,并对四帧差分图进行滤波、二值化和形态学处理。最后,结合YOLO v3网络对动态目标检测结果进行优化,以减小图像模糊和强视差产生的噪声。用静态区域的特征点进行视觉SLAM的跟踪、建图与回环检测,在公共TUM数据集上的实验结果表明,本算法能有效提高动态环境下视觉SLAM的精度。展开更多
文摘同时定位与地图构建(simultaneous localization and mapping,SLAM)作为计算机视觉中的热门方向,在无人驾驶、移动机器人等领域中发挥着重要的作用。由于线特征在低纹理环境下的优势,越来越多的研究人员利用点线特征融合的方法提高SLAM系统的精度和鲁棒性。文中首先简要阐述了传统的点特征SLAM系统在低纹理环境下的局限性,并对现有的视觉SLAM综述文献进行了总结;随后,对经典的点线SLAM方案进行了介绍,并总结了点线特征融合在前端、后端、闭环检测中的研究进展;最后,对点线SLAM未来的发展方向进行了展望。
文摘单目视觉惯性同步定位与地图构建(visual-inertial simultaneous localization and mapping,VI-SLAM)技术因具有硬件成本低、无需对外部环境进行布置等优点,得到了广泛关注,在过去的十多年里取得了长足的进步,涌现出诸多优秀的方法和系统。由于实际场景的复杂性,不同方法难免有各自的局限性。虽然已经有一些工作对VISLAM方法进行了综述和评测,但大多只针对经典的VI-SLAM方法,已不能充分反映最新的VI-SLAM技术发展现状。本文首先对基于单目VI-SLAM方法的基本原理进行阐述,然后对单目VI-SLAM方法进行分类分析。为了综合全面地对比不同方法之间的优劣势,本文特别选取3个公开数据集对代表性的单目VI-SLAM方法从多个维度上进行定量评测,全面系统地分析了各类方法在实际场景尤其是增强现实应用场景中的性能。实验结果表明,基于优化或滤波和优化相结合的方法一般在跟踪精度和鲁棒性上比基于滤波的方法有优势,直接法/半直接法在全局快门拍摄的情况下精度较高,但容易受卷帘快门和光照变化的影响,尤其是大场景下误差累积较快;结合深度学习可以提高极端情况下的鲁棒性。最后,针对深度学习与V-SLAM/VI-SLAM结合、多传感器融合以及端云协同这3个研究热点,对SLAM的发展趋势进行讨论和展望。
文摘随着移动机器人技术不断发展,里程计技术已经成为移动机器人实现环境感知的关键技术,其发展水平对提高机器人的自主化和智能化具有重要意义。首先,系统阐述了同步定位与地图构建(Simultaneous localization and mapping,SLAM)中激光SLAM和视觉SLAM的发展近况,阐述了经典SLAM框架及其数学描述,简要介绍了3类常见相机的相机模型及其视觉里程计的数学描述。其次,分别对传统视觉里程计和深度学习里程计的研究进展进行系统阐述。对比分析了近10年来各类里程计算法的优势与不足。另外,对比分析了7种常用数据集的性能。最后,从精度、鲁棒性、数据集、多模态等方面总结了里程计技术面临的问题,从提高算法实时性、鲁棒性等方面展望了视觉里程计的发展趋势为:更加智能化、小型化新型传感器的发展;与无监督学习融合;语义表达技术的提高;集群机器人协同技术的发展。
文摘为提高视觉-惯性导航系统在弱纹理环境下的鲁棒性和精度,结合特征点法精度高和光流法速度快的特点以及惯性信息,提出一种多尺度均匀化光流融合特征点法的视觉-惯性同时定位与地图(simultaneous localization and mapping, SLAM)构建方法。首先,改进快速特征点提取和描述(oriented fast and rotated brief, ORB)特征提取过程,采用多尺度网格化的方法提取ORB特征点并利用四叉树均匀分配特征点,提高特征分布离散性。其次,在帧间采用LK(Lucas and Kanade)光流法追踪特征点进行帧间的数据关联,在关键帧对特征点进行描述子的计算和匹配从而实现关键帧间的数据关联,保证算法速度的同时提高定位精度和鲁棒性。最后,基于光流法建立的数据关联得到的初始位姿为后端优化提供初始值,整合ORB特征点重投影误差、惯性测量单元(inertial measurement unit, IMU)预积分误差以及滑动窗口先验误差构建最小化目标函数采用滑动窗口非线性优化进行求解。实验表明,所提方法相比单目视觉惯性系统具有更高的定位精度和鲁棒性,定位精度平均提升16.7%。