期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于视感知特征的多光谱高保真降维方法研究 被引量:6
1
作者 梁金星 万晓霞 卢玮朋 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2017年第1期177-182,共6页
为解决多光谱数据在降维压缩过程中的颜色精度保持问题,提出一种基于人眼视觉感知特征的多光谱数据高保真降维压缩方法(VPCM)。研究首先依据人眼视觉响应的非线性解析特征,成功构建了同时综合人眼光谱特征与色度特征的变换函数,并通过... 为解决多光谱数据在降维压缩过程中的颜色精度保持问题,提出一种基于人眼视觉感知特征的多光谱数据高保真降维压缩方法(VPCM)。研究首先依据人眼视觉响应的非线性解析特征,成功构建了同时综合人眼光谱特征与色度特征的变换函数,并通过进一步构造的优化函数对其进行修正,以针对不同的样本集找到最佳变换方向,而后利用修正后的视觉特征变换函数对光谱样本集进行空间变换(Γ(S)=C),然后利用主成分分析方法对经视觉特征函数变换后样本集光谱数据进行降维压缩处理,并通过逆变换重构出样本集光谱数据(Γ-1(C)=^S),进行降维评价。实验选取四类具有典型代表性的数据集作为测试样本,分别以D50/2°条件下的CIELab色差和75组典型照明光源(钨丝灯、荧光灯和LED灯)下的平均同色异谱指数(MMI)作为色度主要评价指标,同时对比了Lab-PQR和2-XYZ两种较为先进的光谱降维算法。实验结果为VPCM方法的MMI值最小,其次是LabPQR,而2-XYZ的表现较差;VPCM方法在75组光源下对四组样本集的平均重构色差ΔEab也为最小,且最大样本平均色差及方差均要小于其他两种方法;VPCM方法的重构光谱精度介于Lab-PQR和2-XYZ之间,Lab-PQR的重构光谱精度最高。实验结果显示新方法色度压缩精度整体优于对比的两种方法,在变换参考条件下具有良好的色差稳定性,能够较好的应用于多光谱数据色度高保真压缩。 展开更多
关键词 多光谱 视觉特征函数 光谱降维 主成分分析 色度精度
下载PDF
Vision-based behavior prediction of ball carrier in basketball matches 被引量:2
2
作者 夏利民 王千 吴联世 《Journal of Central South University》 SCIE EI CAS 2012年第8期2142-2151,共10页
A new vision-based approach was presented for predicting the behavior of the ball carrier—shooting, passing and dribbling in basketball matches. It was proposed to recognize the ball carrier’s head pose by classifyi... A new vision-based approach was presented for predicting the behavior of the ball carrier—shooting, passing and dribbling in basketball matches. It was proposed to recognize the ball carrier’s head pose by classifying its yaw angle to determine his vision range and the court situation of the sportsman within his vision range can be further learned. In basketball match videos characterized by cluttered background, fast motion of the sportsmen and low resolution of their head images, and the covariance descriptor, were adopted to fuse multiple visual features of the head region, which can be seen as a point on the Riemannian manifold and then mapped to the tangent space. Then, the classification of head yaw angle was directly completed in this space through the trained multiclass LogitBoost. In order to describe the court situation of all sportsmen within the ball carrier’s vision range, artificial potential field (APF)-based information was introduced. Finally, the behavior of the ball carrier—shooting, passing and dribbling, was predicted using radial basis function (RBF) neural network as the classifier. Experimental results show that the average prediction accuracy of the proposed method can reach 80% on the video recorded in basketball matches, which validates its effectiveness. 展开更多
关键词 covariance descriptor tangent space LogitBoost artificial potential field radial basis function neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部