期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
采用视觉特征整合的红外弱小目标检测
被引量:
10
1
作者
赵尚男
王灵杰
+1 位作者
张新
吴洪波
《光学精密工程》
EI
CAS
CSCD
北大核心
2020年第2期497-506,共10页
针对红外光学系统在复杂背景下的弱小目标检测问题,建立了基于特征整合的信息处理模型,提出了采用视觉特征整合的弱小目标检测方法。该方法首先利用视网膜神经节细胞感受野的数学模型DOG(Different-of-Gaussian)对红外图像进行初级信息...
针对红外光学系统在复杂背景下的弱小目标检测问题,建立了基于特征整合的信息处理模型,提出了采用视觉特征整合的弱小目标检测方法。该方法首先利用视网膜神经节细胞感受野的数学模型DOG(Different-of-Gaussian)对红外图像进行初级信息处理,初步检测出弱小目标。而后,分为空域和频域两个通道进行特征提取。在空域通道,利用图像信息构造二阶微分Hessian矩阵,通过计算其直迹与行列式进行局部极值的判定,提取出含有弱小目标的结构分量特征;在频域通道,利用小波对图像频域进行二级分解,提取出含有弱小目标的高频分量特征。最后,将空域通道与频域通道的分量特征整合,提取出复杂背景下的弱小目标。实验结果表明:当虚警率为10-3时,该方法对弱小目标的平均检测概率为95.17%。基本满足红外弱小目标检测方法的稳定可靠、精度高等要求。
展开更多
关键词
计算机
视觉
目标检测
弱小目标
视觉特征整合
下载PDF
职称材料
题名
采用视觉特征整合的红外弱小目标检测
被引量:
10
1
作者
赵尚男
王灵杰
张新
吴洪波
机构
中国科学院长春光学精密机械与物理研究所
中国科学院大学
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2020年第2期497-506,共10页
基金
国家重点研发计划资助项目(No.2016YFB0501002)
国家自然基金面上项目资助项目(No.61675100)
高分辨率对地观测重大专项资助项目(No.30-Y20A02-9003-17/18)。
文摘
针对红外光学系统在复杂背景下的弱小目标检测问题,建立了基于特征整合的信息处理模型,提出了采用视觉特征整合的弱小目标检测方法。该方法首先利用视网膜神经节细胞感受野的数学模型DOG(Different-of-Gaussian)对红外图像进行初级信息处理,初步检测出弱小目标。而后,分为空域和频域两个通道进行特征提取。在空域通道,利用图像信息构造二阶微分Hessian矩阵,通过计算其直迹与行列式进行局部极值的判定,提取出含有弱小目标的结构分量特征;在频域通道,利用小波对图像频域进行二级分解,提取出含有弱小目标的高频分量特征。最后,将空域通道与频域通道的分量特征整合,提取出复杂背景下的弱小目标。实验结果表明:当虚警率为10-3时,该方法对弱小目标的平均检测概率为95.17%。基本满足红外弱小目标检测方法的稳定可靠、精度高等要求。
关键词
计算机
视觉
目标检测
弱小目标
视觉特征整合
Keywords
computer vision
target detection
dim small target
visual feature integration
分类号
TP394.1 [自动化与计算机技术—计算机应用技术]
TN911.73 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
采用视觉特征整合的红外弱小目标检测
赵尚男
王灵杰
张新
吴洪波
《光学精密工程》
EI
CAS
CSCD
北大核心
2020
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部