The paradigms of old media are replaced by new forms of creativity and delivery of content by those who strive to enhance innovative ways of communication and learning based on universally accepted guidelines. These u...The paradigms of old media are replaced by new forms of creativity and delivery of content by those who strive to enhance innovative ways of communication and learning based on universally accepted guidelines. These ubiquitous rules of design are what scholars in the field of call as the principles of design. Particularly when instructional effectiveness of a new message is under close lens, instructional designers unanimously accept and implement these design principles in the process of planning and designing products for consumers and/or learners With today's digital revolution and technological break-throughs, instructional designers need to keep seeking new forms of design, communication, and learning with various forms of instructional media and innovative, technology-rich design techniques. Given this educational milieu in an ever-growing digital world of learning and instruction, this paper will focus on eliciting some of these most innovative and outstanding instructional design (ID) products and evaluate their effectiveness in learning and teaching environments based on an army of ID principles generally accepted by the scholars of the field.展开更多
Colorful visual signals are important systems for investigating the effects of signaling environ ments and receiver physiology on signal evolution as predicted by the sensory drive hypothesis. Support for the sensory ...Colorful visual signals are important systems for investigating the effects of signaling environ ments and receiver physiology on signal evolution as predicted by the sensory drive hypothesis. Support for the sensory drive hypothesis on color signal evolution is mostly based on document ing correlations between the properties of signals and habitat conditions under which the signals are given (i.e., a correlational approach) and less commonly on the use of mathematical models that integrate representations of visual environments, signal properties, and sensory systems (i.e., a functional approach). Here, we used an experimental approach in the field to evaluate signal efficacy of colorful lizard throat fans called dewlaps that show geographic variation in the lizard Anolis cristatellus. We used a remote controlled apparatus to display "fake dewlaps" to wild lizards to test for adaptive divergence in dewlap brightness (i.e., perceived intensity) among populations in situ. We found evidence of local adaptation in dewlap brightness consistent with the sensory drive hypothesis. Specifically, dewlaps that had the brightness characteristics of local lizards were more likely to be detected than those with the brightness characteristics of nonlocal lizards. Our findings indicate that simplified mathematical representations of visual environments may allow robust estimates of relative detectability or conspicuousness in natural habitats. We have shown the feasibility of evaluating color signal efficacy experimentally under natural conditions and dem onstrate the potential advantages of presenting isolated components of signals to an intended re ceiver to measure their contribution to signal function.展开更多
文摘The paradigms of old media are replaced by new forms of creativity and delivery of content by those who strive to enhance innovative ways of communication and learning based on universally accepted guidelines. These ubiquitous rules of design are what scholars in the field of call as the principles of design. Particularly when instructional effectiveness of a new message is under close lens, instructional designers unanimously accept and implement these design principles in the process of planning and designing products for consumers and/or learners With today's digital revolution and technological break-throughs, instructional designers need to keep seeking new forms of design, communication, and learning with various forms of instructional media and innovative, technology-rich design techniques. Given this educational milieu in an ever-growing digital world of learning and instruction, this paper will focus on eliciting some of these most innovative and outstanding instructional design (ID) products and evaluate their effectiveness in learning and teaching environments based on an army of ID principles generally accepted by the scholars of the field.
文摘Colorful visual signals are important systems for investigating the effects of signaling environ ments and receiver physiology on signal evolution as predicted by the sensory drive hypothesis. Support for the sensory drive hypothesis on color signal evolution is mostly based on document ing correlations between the properties of signals and habitat conditions under which the signals are given (i.e., a correlational approach) and less commonly on the use of mathematical models that integrate representations of visual environments, signal properties, and sensory systems (i.e., a functional approach). Here, we used an experimental approach in the field to evaluate signal efficacy of colorful lizard throat fans called dewlaps that show geographic variation in the lizard Anolis cristatellus. We used a remote controlled apparatus to display "fake dewlaps" to wild lizards to test for adaptive divergence in dewlap brightness (i.e., perceived intensity) among populations in situ. We found evidence of local adaptation in dewlap brightness consistent with the sensory drive hypothesis. Specifically, dewlaps that had the brightness characteristics of local lizards were more likely to be detected than those with the brightness characteristics of nonlocal lizards. Our findings indicate that simplified mathematical representations of visual environments may allow robust estimates of relative detectability or conspicuousness in natural habitats. We have shown the feasibility of evaluating color signal efficacy experimentally under natural conditions and dem onstrate the potential advantages of presenting isolated components of signals to an intended re ceiver to measure their contribution to signal function.