针对非局部均值(non local mean,NLM)相似性度量不够准确的问题,提出一种基于模糊度量的视觉特征相似度的改进非局部均值图像去噪算法。利用模糊度量理论构建视觉特征度量相似性函数作为衡量图像像素点相似性;将平滑核函数代替高斯加权...针对非局部均值(non local mean,NLM)相似性度量不够准确的问题,提出一种基于模糊度量的视觉特征相似度的改进非局部均值图像去噪算法。利用模糊度量理论构建视觉特征度量相似性函数作为衡量图像像素点相似性;将平滑核函数代替高斯加权核函数,提高运算速度和避免滤波参数的设置;利用构建视觉特征相似性度量生成的平滑核函数,对图像进行去噪。由于改进方法考虑图像视觉结构特征,更加完善了非局部均值结构相似的特点。在高斯噪声和椒盐噪声下,用峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity index,SSIM)评价指标分别对比分析提出方法与几种优秀的改进NLM方法的降噪性能。实验结果表明,改进的新方法在去噪性能方面得到较高的提升,同时降低了相似度计算的复杂度和减少了参数设置问题。展开更多
Objective video quality assessment plays a very important role in multimedia signal processing. Several extensions of the structural similarity (SSIM) index could not predict the quality of the video sequence effect...Objective video quality assessment plays a very important role in multimedia signal processing. Several extensions of the structural similarity (SSIM) index could not predict the quality of the video sequence effectively. In this paper we propose a structural similarity quality metric for videos based on a spatial-temporal visual attention model. This model acquires the motion attended region and the distortion attended region by computing the motion features and the distortion contrast. It mimics the visual attention shifting between the two attended regions and takes the burst of error into account by introducing the non-linear weighting fimctions to give a much higher weighting factor to the extremely damaged frames. The proposed metric based on the model renders the final object quality rating of the whole video sequence and is validated using the 50 Hz video sequences of Video Quality Experts Group Phase I test database.展开更多
文摘针对非局部均值(non local mean,NLM)相似性度量不够准确的问题,提出一种基于模糊度量的视觉特征相似度的改进非局部均值图像去噪算法。利用模糊度量理论构建视觉特征度量相似性函数作为衡量图像像素点相似性;将平滑核函数代替高斯加权核函数,提高运算速度和避免滤波参数的设置;利用构建视觉特征相似性度量生成的平滑核函数,对图像进行去噪。由于改进方法考虑图像视觉结构特征,更加完善了非局部均值结构相似的特点。在高斯噪声和椒盐噪声下,用峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity index,SSIM)评价指标分别对比分析提出方法与几种优秀的改进NLM方法的降噪性能。实验结果表明,改进的新方法在去噪性能方面得到较高的提升,同时降低了相似度计算的复杂度和减少了参数设置问题。
文摘Objective video quality assessment plays a very important role in multimedia signal processing. Several extensions of the structural similarity (SSIM) index could not predict the quality of the video sequence effectively. In this paper we propose a structural similarity quality metric for videos based on a spatial-temporal visual attention model. This model acquires the motion attended region and the distortion attended region by computing the motion features and the distortion contrast. It mimics the visual attention shifting between the two attended regions and takes the burst of error into account by introducing the non-linear weighting fimctions to give a much higher weighting factor to the extremely damaged frames. The proposed metric based on the model renders the final object quality rating of the whole video sequence and is validated using the 50 Hz video sequences of Video Quality Experts Group Phase I test database.