期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
近底探测型仿生UUV小目标物视觉识别检测系统
1
作者 陈栢仲 王崇磊 郭春雨 《水下无人系统学报》 2023年第6期911-917,共7页
仿生无人水下航行器(UUV)通过模仿海洋生物的运动原理,替代人力并实现水下作业,相较于传统的UUV具备高稳定性、高灵活性、低噪声以及强环境通过性等仿生学特性优势,为近距离水下图像拍摄与水下目标物识别技术提供了优良的作业平台。文... 仿生无人水下航行器(UUV)通过模仿海洋生物的运动原理,替代人力并实现水下作业,相较于传统的UUV具备高稳定性、高灵活性、低噪声以及强环境通过性等仿生学特性优势,为近距离水下图像拍摄与水下目标物识别技术提供了优良的作业平台。文中以一种仿生胸鳍柔性波动推进UUV作为研究目标,针对水下小目标物的贴底检测任务,开展水下图像预处理技术与深度学习网络Resnet优化的深入研究,设计一套满足该UUV运动特性的水下环境感知系统。最终通过试验进行验证,文中提出的水下视觉检测方法的分类结果准确率为89.6%,与其他分类网络相比具有最高的检测准确率,能够适用于仿生胸鳍波动推进UUV进行水下贴底目标检测任务。在文章结尾对仿生UUV水下检测识别系统的优势与出现的问题进行了分析并提出了展望。 展开更多
关键词 仿生无人水下航行器 图像预处理 视觉识别检测 水下目标物识别
下载PDF
A method for workpiece surface small-defect detection based on CutMix and YOLOv3 被引量:6
2
作者 Xing Junjie Jia Minping +1 位作者 Xu Feiyun Hu Jianzhong 《Journal of Southeast University(English Edition)》 EI CAS 2021年第2期128-136,共9页
Surface small defects are often missed and incorrectly detected due to their small quantity and unapparent visual features.A method named CSYOLOv3,which is based on CutMix and YOLOv3,is proposed to solve such a proble... Surface small defects are often missed and incorrectly detected due to their small quantity and unapparent visual features.A method named CSYOLOv3,which is based on CutMix and YOLOv3,is proposed to solve such a problem.First,a four-image CutMix method is used to increase the small-defect quantity,and the process is dynamically adjusted based on the beta distribution.Then,the classic YOLOv3 is improved to detect small defects accurately.The shallow and large feature maps are split,and several of them are merged with the feature maps of the predicted branch to preserve the shallow features.The loss function of YOLOv3 is optimized and weighted to improve the attention to small defects.Finally,this method is used to detect 512×512 pixel images under RTX 2060Ti GPU,which can reach the speed of 14.09 frame/s,and the mAP is 71.80%,which is 5%-10%higher than that of other methods.For small defects below 64×64 pixels,the mAP of the method reaches 64.15%,which is 14%higher than that of YOLOv3-GIoU.The surface defects of the workpiece can be effectively detected by the proposed method,and the performance in detecting small defects is significantly improved. 展开更多
关键词 machine vision image recognition deep convolutional neural network defect detection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部