期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多模态融合与多层注意力的视频内容文本表述研究 被引量:9
1
作者 赵宏 郭岚 +1 位作者 陈志文 郑厚泽 《计算机工程》 CAS CSCD 北大核心 2022年第10期45-54,共10页
针对现有视频内容文本表述模型存在生成的文本表述单一、准确率不高等问题,提出一种融合帧级图像及音频信息的视频内容文本表述模型。基于自注意力机制设计单模态嵌入层网络结构,并将其嵌入单模态特征中学习单模态特征参数。采用联合表... 针对现有视频内容文本表述模型存在生成的文本表述单一、准确率不高等问题,提出一种融合帧级图像及音频信息的视频内容文本表述模型。基于自注意力机制设计单模态嵌入层网络结构,并将其嵌入单模态特征中学习单模态特征参数。采用联合表示、协作表示两种方法对单模态嵌入层输出的高维特征向量进行双模态特征融合,使模型能关注视频中不同目标间的交互关系,从而生成更加丰富、准确的视频文本表述。使用大规模数据集对模型进行预训练,并提取视频帧、视频所携带的音频等表征信息,将其送入编解码器实现视频内容的文本表述。在MSR-VTT和LSMDC数据集上的实验结果表明,所提模型的BLEU4、METEOR、ROUGEL和CIDEr指标分别为0.386、0.250、0.609和0.463,相较于MSR-VTT挑战赛中IIT DeIhi发布的模型,分别提升了0.082、0.037、0.115和0.257,能有效提升视频内容文本表述的准确率。 展开更多
关键词 视频内容文本描述 多模态融合 联合表示 协作表示 自注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部