AIM:To support probe-based confocal laser endomi-croscopy (pCLE) diagnosis by designing software for the automated classification of colonic polyps. METHODS:Intravenous fluorescein pCLE imaging of colorectal lesions w...AIM:To support probe-based confocal laser endomi-croscopy (pCLE) diagnosis by designing software for the automated classification of colonic polyps. METHODS:Intravenous fluorescein pCLE imaging of colorectal lesions was performed on patients under-going screening and surveillance colonoscopies, followed by polypectomies. All resected specimens were reviewed by a reference gastrointestinal pathologist blinded to pCLE information. Histopathology was used as the criterion standard for the differentiation between neoplastic and non-neoplastic lesions. The pCLE video sequences, recorded for each polyp, were analyzed off-line by 2 expert endoscopists who were blinded to the endoscopic characteristics and histopathology. These pCLE videos, along with their histopathology diagnosis, were used to train the automated classification software which is a content-based image retrieval technique followed by k-nearest neighbor classification. The performance of the off-line diagnosis of pCLE videos established by the 2 expert endoscopists was compared with that of automated pCLE software classification. All evaluations were performed using leave-one-patient- out cross-validation to avoid bias. RESULTS:Colorectal lesions (135) were imaged in 71 patients. Based on histopathology, 93 of these 135 lesions were neoplastic and 42 were non-neoplastic. The study found no statistical significance for the difference between the performance of automated pCLE software classification (accuracy 89.6%, sensitivity 92.5%, specificity 83.3%, using leave-one-patient-out cross-validation) and the performance of the off-line diagnosis of pCLE videos established by the 2 expert endoscopists (accuracy 89.6%, sensitivity 91.4%, specificity 85.7%). There was very low power (< 6%) to detect the observed differences. The 95% confidence intervals for equivalence testing were:-0.073 to 0.073 for accuracy, -0.068 to 0.089 for sensitivity and -0.18 to 0.13 for specificity. The classification software proposed in this study is not a "black box" but an informative tool based on the query by example model that produces, as intermediate results, visually similar annotated videos that are directly interpretable by the endoscopist. CONCLUSION:The proposed software for automated classification of pCLE videos of colonic polyps achieves high performance, comparable to that of off-line diagnosis of pCLE videos established by expert endoscopists.展开更多
Somatic cell counts (SCCs) levels indicate the occurrence of infections in goat udders and are related to the productivity of goat milk, cheese and yoghurt. This work presents a segmentation method for counting soma...Somatic cell counts (SCCs) levels indicate the occurrence of infections in goat udders and are related to the productivity of goat milk, cheese and yoghurt. This work presents a segmentation method for counting somatic cells in goat milk images, intending to detect an infection known as mastiffs, which is the major cause of loss in dairy farming. The image segmentation procedure is devised by using the lab color space and the watershed transform. A large number of samples under variable preparation conditions are treated with the proposed method. A comparison between manual and the proposed technique is presented. Promising results indicates that video-microscopy systems may be employed to develop automated SCC for goat milk.展开更多
文摘AIM:To support probe-based confocal laser endomi-croscopy (pCLE) diagnosis by designing software for the automated classification of colonic polyps. METHODS:Intravenous fluorescein pCLE imaging of colorectal lesions was performed on patients under-going screening and surveillance colonoscopies, followed by polypectomies. All resected specimens were reviewed by a reference gastrointestinal pathologist blinded to pCLE information. Histopathology was used as the criterion standard for the differentiation between neoplastic and non-neoplastic lesions. The pCLE video sequences, recorded for each polyp, were analyzed off-line by 2 expert endoscopists who were blinded to the endoscopic characteristics and histopathology. These pCLE videos, along with their histopathology diagnosis, were used to train the automated classification software which is a content-based image retrieval technique followed by k-nearest neighbor classification. The performance of the off-line diagnosis of pCLE videos established by the 2 expert endoscopists was compared with that of automated pCLE software classification. All evaluations were performed using leave-one-patient- out cross-validation to avoid bias. RESULTS:Colorectal lesions (135) were imaged in 71 patients. Based on histopathology, 93 of these 135 lesions were neoplastic and 42 were non-neoplastic. The study found no statistical significance for the difference between the performance of automated pCLE software classification (accuracy 89.6%, sensitivity 92.5%, specificity 83.3%, using leave-one-patient-out cross-validation) and the performance of the off-line diagnosis of pCLE videos established by the 2 expert endoscopists (accuracy 89.6%, sensitivity 91.4%, specificity 85.7%). There was very low power (< 6%) to detect the observed differences. The 95% confidence intervals for equivalence testing were:-0.073 to 0.073 for accuracy, -0.068 to 0.089 for sensitivity and -0.18 to 0.13 for specificity. The classification software proposed in this study is not a "black box" but an informative tool based on the query by example model that produces, as intermediate results, visually similar annotated videos that are directly interpretable by the endoscopist. CONCLUSION:The proposed software for automated classification of pCLE videos of colonic polyps achieves high performance, comparable to that of off-line diagnosis of pCLE videos established by expert endoscopists.
文摘Somatic cell counts (SCCs) levels indicate the occurrence of infections in goat udders and are related to the productivity of goat milk, cheese and yoghurt. This work presents a segmentation method for counting somatic cells in goat milk images, intending to detect an infection known as mastiffs, which is the major cause of loss in dairy farming. The image segmentation procedure is devised by using the lab color space and the watershed transform. A large number of samples under variable preparation conditions are treated with the proposed method. A comparison between manual and the proposed technique is presented. Promising results indicates that video-microscopy systems may be employed to develop automated SCC for goat milk.