With relatively high transmission capacity and usually unconstrained connections, IEEE802.11 WLANs provide the ideal infrastructure for pervasive video content sharing and communications. However, the delivery of high...With relatively high transmission capacity and usually unconstrained connections, IEEE802.11 WLANs provide the ideal infrastructure for pervasive video content sharing and communications. However, the delivery of high-performance video streams over 802.11 WLANs remains a challenging task due to the inherent characteristics of compressed video and dynamic channels. In this paper, we present a brief survey of various recent innovations that have been developed to enhance the Quality of Service (QoS) performance for video over WLANs. Based on the application scenarios, the solutions have focused mainly on three network layers, that is, Application layer (APP), Media Access Control layer (MAC), and Physical layer (PHY). After reviewing the video compression technology, we first examine various single-layer solutions for video over WLANs. We then discuss several cross-layer solutions that take advantage of mutual interactions between different network layers. Finally, several technical issues beyond QoS performance, including energy and security, are also addressed. We conclude that the application of video over WLANs will continue to increase in future.展开更多
文摘With relatively high transmission capacity and usually unconstrained connections, IEEE802.11 WLANs provide the ideal infrastructure for pervasive video content sharing and communications. However, the delivery of high-performance video streams over 802.11 WLANs remains a challenging task due to the inherent characteristics of compressed video and dynamic channels. In this paper, we present a brief survey of various recent innovations that have been developed to enhance the Quality of Service (QoS) performance for video over WLANs. Based on the application scenarios, the solutions have focused mainly on three network layers, that is, Application layer (APP), Media Access Control layer (MAC), and Physical layer (PHY). After reviewing the video compression technology, we first examine various single-layer solutions for video over WLANs. We then discuss several cross-layer solutions that take advantage of mutual interactions between different network layers. Finally, several technical issues beyond QoS performance, including energy and security, are also addressed. We conclude that the application of video over WLANs will continue to increase in future.