期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
广义贝叶斯字典学习K-SVD稀疏表示算法
被引量:
1
1
作者
周飞飞
李雷
《计算机技术与发展》
2016年第5期71-75,共5页
稀疏字典学习是一种功能强大的视频图像稀疏表示方法,在稀疏信号处理领域引起了广泛关注。K-SVD算法在稀疏表示技术上取得了巨大成功,但遇到了字典原子未充分利用的问题,而稀疏贝叶斯字典学习(Sparse Bayesian Dictionary Learning,SBDL...
稀疏字典学习是一种功能强大的视频图像稀疏表示方法,在稀疏信号处理领域引起了广泛关注。K-SVD算法在稀疏表示技术上取得了巨大成功,但遇到了字典原子未充分利用的问题,而稀疏贝叶斯字典学习(Sparse Bayesian Dictionary Learning,SBDL)算法存在稀疏表示后信号原子不稀疏和不收敛的缺点。广义贝叶斯字典学习(Generalized Bayesian Dictionary Learning,GBDL)K-SVD算法提供了一种新型稀疏表示系数更新模式,使得过完备字典稀疏学习算法逐步收敛的同时训练向量足够稀疏。仿真结果表明,对有损像素和压缩传感这两种视频图像帧进行稀疏化,GBDL K-SVD算法表示的视频图像帧的重构效果与SBDL K-SVD算法相比有明显的提高。
展开更多
关键词
稀疏
贝叶斯学习
视频图像稀疏表示
字典学习
K-SVD算法
下载PDF
职称材料
题名
广义贝叶斯字典学习K-SVD稀疏表示算法
被引量:
1
1
作者
周飞飞
李雷
机构
南京邮电大学理学院
出处
《计算机技术与发展》
2016年第5期71-75,共5页
基金
国家自然科学基金资助项目(61071167
61373137)
江苏省研究生科研创新计划项目(KYZZ_0233)
文摘
稀疏字典学习是一种功能强大的视频图像稀疏表示方法,在稀疏信号处理领域引起了广泛关注。K-SVD算法在稀疏表示技术上取得了巨大成功,但遇到了字典原子未充分利用的问题,而稀疏贝叶斯字典学习(Sparse Bayesian Dictionary Learning,SBDL)算法存在稀疏表示后信号原子不稀疏和不收敛的缺点。广义贝叶斯字典学习(Generalized Bayesian Dictionary Learning,GBDL)K-SVD算法提供了一种新型稀疏表示系数更新模式,使得过完备字典稀疏学习算法逐步收敛的同时训练向量足够稀疏。仿真结果表明,对有损像素和压缩传感这两种视频图像帧进行稀疏化,GBDL K-SVD算法表示的视频图像帧的重构效果与SBDL K-SVD算法相比有明显的提高。
关键词
稀疏
贝叶斯学习
视频图像稀疏表示
字典学习
K-SVD算法
Keywords
sparse Bayesian learning
video image sparse representation
dictionary learning
K-SVD algorithm
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
广义贝叶斯字典学习K-SVD稀疏表示算法
周飞飞
李雷
《计算机技术与发展》
2016
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部