街道场景视频实例分割是无人驾驶技术研究中的关键问题之一,可为车辆在街道场景下的环境感知和路径规划提供决策依据.针对现有方法存在多纵横比锚框应用单一感受野采样导致边缘特征提取不充分以及高层特征金字塔空间细节位置信息匮乏的...街道场景视频实例分割是无人驾驶技术研究中的关键问题之一,可为车辆在街道场景下的环境感知和路径规划提供决策依据.针对现有方法存在多纵横比锚框应用单一感受野采样导致边缘特征提取不充分以及高层特征金字塔空间细节位置信息匮乏的问题,本文提出锚框校准和空间位置信息补偿视频实例分割(Anchor frame calibration and Spatial position information compensation for Video Instance Segmentation,AS-VIS)网络.首先,在预测头3个分支中添加锚框校准模块实现同锚框纵横比匹配的多类型感受野采样,解决目标边缘提取不充分问题.其次,设计多感受野下采样模块将各种感受野采样后的特征融合,解决下采样信息缺失问题.最后,应用多感受野下采样模块将特征金字塔低层目标区域激活特征映射嵌入到高层中实现空间位置信息补偿,解决高层特征空间细节位置信息匮乏问题.在Youtube-VIS标准库中提取街道场景视频数据集,其中包括训练集329个视频和验证集53个视频.实验结果与YolactEdge检测和分割精度指标定量对比表明,锚框校准平均精度分别提升8.63%和5.09%,空间位置信息补偿特征金字塔平均精度分别提升7.76%和4.75%,AS-VIS总体平均精度分别提升9.26%和6.46%.本文方法实现了街道场景视频序列实例级同步检测、跟踪与分割,为无人驾驶车辆环境感知提供有效的理论依据.展开更多
针对全监督视频实例分割网络训练数据高度依赖精细掩码标注,时间和人工成本过高,导致智能机器无法快速适应新场景的问题,提出一种端到端的掩码生成动态调控弱监督视频实例分割(Weakly Supervised Video Instance Segmentation,WSVIS)网...针对全监督视频实例分割网络训练数据高度依赖精细掩码标注,时间和人工成本过高,导致智能机器无法快速适应新场景的问题,提出一种端到端的掩码生成动态调控弱监督视频实例分割(Weakly Supervised Video Instance Segmentation,WSVIS)网络。为克服初始掩码预测层通道维度突降导致的实例激活特征丢失问题,构建多级特征融合模块,利用特征复用策略预测初始实例特征并融合相对位置信息生成初始预测掩码。然后,提出动态调控机制在通道和空间维度上建立掩码特征依赖关系,强化初始预测掩码与实例感知信息之间的动态交互。最后,网络设计二元颜色相似性生成伪亲和标签取代精细掩码标注,联合边界框与掩码一致性损失实现仅边界框标注的弱监督视频实例分割。实验结果表明,在BoxSet和YT-VIS数据集上,WSVIS网络能达到与全监督网络相近的分割精度和分割效果,同时能够满足实时推理要求,为智能机器快速适应新场景实现实时环境感知和理解提供了理论支撑和算法依据。展开更多
文摘街道场景视频实例分割是无人驾驶技术研究中的关键问题之一,可为车辆在街道场景下的环境感知和路径规划提供决策依据.针对现有方法存在多纵横比锚框应用单一感受野采样导致边缘特征提取不充分以及高层特征金字塔空间细节位置信息匮乏的问题,本文提出锚框校准和空间位置信息补偿视频实例分割(Anchor frame calibration and Spatial position information compensation for Video Instance Segmentation,AS-VIS)网络.首先,在预测头3个分支中添加锚框校准模块实现同锚框纵横比匹配的多类型感受野采样,解决目标边缘提取不充分问题.其次,设计多感受野下采样模块将各种感受野采样后的特征融合,解决下采样信息缺失问题.最后,应用多感受野下采样模块将特征金字塔低层目标区域激活特征映射嵌入到高层中实现空间位置信息补偿,解决高层特征空间细节位置信息匮乏问题.在Youtube-VIS标准库中提取街道场景视频数据集,其中包括训练集329个视频和验证集53个视频.实验结果与YolactEdge检测和分割精度指标定量对比表明,锚框校准平均精度分别提升8.63%和5.09%,空间位置信息补偿特征金字塔平均精度分别提升7.76%和4.75%,AS-VIS总体平均精度分别提升9.26%和6.46%.本文方法实现了街道场景视频序列实例级同步检测、跟踪与分割,为无人驾驶车辆环境感知提供有效的理论依据.
文摘针对全监督视频实例分割网络训练数据高度依赖精细掩码标注,时间和人工成本过高,导致智能机器无法快速适应新场景的问题,提出一种端到端的掩码生成动态调控弱监督视频实例分割(Weakly Supervised Video Instance Segmentation,WSVIS)网络。为克服初始掩码预测层通道维度突降导致的实例激活特征丢失问题,构建多级特征融合模块,利用特征复用策略预测初始实例特征并融合相对位置信息生成初始预测掩码。然后,提出动态调控机制在通道和空间维度上建立掩码特征依赖关系,强化初始预测掩码与实例感知信息之间的动态交互。最后,网络设计二元颜色相似性生成伪亲和标签取代精细掩码标注,联合边界框与掩码一致性损失实现仅边界框标注的弱监督视频实例分割。实验结果表明,在BoxSet和YT-VIS数据集上,WSVIS网络能达到与全监督网络相近的分割精度和分割效果,同时能够满足实时推理要求,为智能机器快速适应新场景实现实时环境感知和理解提供了理论支撑和算法依据。