期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于多列深度3D卷积神经网络的手势识别 被引量:21
1
作者 易生 梁华刚 茹锋 《计算机工程》 CAS CSCD 北大核心 2017年第8期243-248,共6页
传统2D卷积神经网络对于视频连续帧图像的特征提取容易丢失目标时间轴上的运动信息,导致识别准确度较低。为此,提出一种基于多列深度3D卷积神经网络(3D CNN)的手势识别方法。采用3D卷积核对连续帧图像进行卷积操作,提取目标的时间和空... 传统2D卷积神经网络对于视频连续帧图像的特征提取容易丢失目标时间轴上的运动信息,导致识别准确度较低。为此,提出一种基于多列深度3D卷积神经网络(3D CNN)的手势识别方法。采用3D卷积核对连续帧图像进行卷积操作,提取目标的时间和空间特征捕捉运动信息。为避免因单组3D CNN特征提取不充分而导致的误分类,训练多组具有较强分类能力的3D CNN结构组成多列深度3D CNN,该结构通过对多组3D CNN的输出结果进行权衡,将权重最大的类别判定为最终的输出结果。实验结果表明,将多列深度3D CNN应用于CHGDs数据集上进行手势识别,识别率达到95.09%,与单组3D CNN及传统2D CNN相比分别提高近7%,20%,对连续图像目标识别具有较好的识别能力。 展开更多
关键词 视频图像序列处理 手势识别 深度学习 特征提取 卷积神经网络 运动目标识别
下载PDF
Super-resolution inpainting
2
作者 SHIH Timothy K 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第6期487-491,共5页
Image or video resources are often received in poor condition, mostly with noise or defects making the resources hard to read. We propose an effective algorithm based on digital image inpainting. The mechanism can be ... Image or video resources are often received in poor condition, mostly with noise or defects making the resources hard to read. We propose an effective algorithm based on digital image inpainting. The mechanism can be used in restoring images or video frames with very high noise or defect ratio (e.g., 90%). The algorithm is based on the concept of image subdivision and estimation of color variations. Noises inside blocks of different sizes are inpainted with different levels of surrounding information. The results showed that an almost unrecognizable image can be recovered with visually good result. The algorithm can be further extended for processing motion picture with high percentage of noise. 展开更多
关键词 Image inpainting Super resolution Image processing
下载PDF
Fast Motion Estimation Algorithm with Edge Alignment for H.264 Encoder
3
作者 Rastislav Adamek Gabriela Andrejkova 《Computer Technology and Application》 2013年第7期341-345,共5页
Image sequences processing and video encoding are extremely time consuming problems. The time complexity of them depends on image contents. This paper presents an estimation of a block motion method for video coding w... Image sequences processing and video encoding are extremely time consuming problems. The time complexity of them depends on image contents. This paper presents an estimation of a block motion method for video coding with edge alignment. This method uses blocks of size 4 × 4 and its basic idea is to find motion vector using the edge position in each video coding block. The method finds the motion vectors more accurately and faster than any known classical method that calculates all the possibilities. Our presented algorithm is compared with known classical algorithms using the evaluation function of the peak signal-to-noise ratio. For comparison of the methods we are using parameters such as time, CPU usage, and size of compressed data. The comparison is made on benchmark data in color format YUV. Results of our proposed method are comparable and in some cases better than results of standard classical algorithms. 展开更多
关键词 Codec H.264 ENCODER edge detection EVO (Enabling Virtual Organizations) conference system.
下载PDF
基于视频帧连贯信息的3维人体姿势优化估计方法 被引量:9
4
作者 谭嘉崴 丁其川 白忠玉 《机器人》 EI CSCD 北大核心 2021年第1期9-16,共8页
针对基于视频的3维人体姿态估计问题,传统方法是先估计出每帧图像中的3维人体姿态,再将估计结果按帧序排列,获得视频中的3维人体姿态.这种方法没有考虑连续帧间人体动作的连贯性,以及人体关节连接的空间一致性,估计结果中常会出现人体... 针对基于视频的3维人体姿态估计问题,传统方法是先估计出每帧图像中的3维人体姿态,再将估计结果按帧序排列,获得视频中的3维人体姿态.这种方法没有考虑连续帧间人体动作的连贯性,以及人体关节连接的空间一致性,估计结果中常会出现人体的高频抖动及动作的较大偏差.针对该问题,提出一种基于视频帧连贯信息的3维姿态优化估计方法.首先利用2维姿势估计结果优化人体3维关节点坐标,以减少抖动;其次引入前后帧关节点运动的逆向与正向预测,以保持动作连贯性;最后,加入骨骼连接约束,建立可保持人体动作轨迹光滑且优化前后关节连接结构一致的模型,实现对3维人体姿态的精确估计.在公共数据集MPI-INF-3DHP上的测试结果显示,与基准3维姿态估计方法相比,本文方法估计的关节点平均误差降低3.2%.在公共数据集3DPW上的测试结果显示,与未优化情形相比,加速误差降低44%. 展开更多
关键词 姿态估计 动作重建 视频序列处理 人体行为识别
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部