期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多模态融合与多层注意力的视频内容文本表述研究
被引量:
9
1
作者
赵宏
郭岚
+1 位作者
陈志文
郑厚泽
《计算机工程》
CAS
CSCD
北大核心
2022年第10期45-54,共10页
针对现有视频内容文本表述模型存在生成的文本表述单一、准确率不高等问题,提出一种融合帧级图像及音频信息的视频内容文本表述模型。基于自注意力机制设计单模态嵌入层网络结构,并将其嵌入单模态特征中学习单模态特征参数。采用联合表...
针对现有视频内容文本表述模型存在生成的文本表述单一、准确率不高等问题,提出一种融合帧级图像及音频信息的视频内容文本表述模型。基于自注意力机制设计单模态嵌入层网络结构,并将其嵌入单模态特征中学习单模态特征参数。采用联合表示、协作表示两种方法对单模态嵌入层输出的高维特征向量进行双模态特征融合,使模型能关注视频中不同目标间的交互关系,从而生成更加丰富、准确的视频文本表述。使用大规模数据集对模型进行预训练,并提取视频帧、视频所携带的音频等表征信息,将其送入编解码器实现视频内容的文本表述。在MSR-VTT和LSMDC数据集上的实验结果表明,所提模型的BLEU4、METEOR、ROUGEL和CIDEr指标分别为0.386、0.250、0.609和0.463,相较于MSR-VTT挑战赛中IIT DeIhi发布的模型,分别提升了0.082、0.037、0.115和0.257,能有效提升视频内容文本表述的准确率。
展开更多
关键词
视频
内容
文本
描述
多模态融合
联合表示
协作表示
自注意力机制
下载PDF
职称材料
融合语义信息的视频摘要生成
被引量:
2
2
作者
滑蕊
吴心筱
赵文天
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2021年第3期650-657,共8页
任务旨在通过生成简短的视频片段来表示原视频的主要内容,针对现有方法缺乏对语义信息探索的问题,提出了一种融合语义信息的视频摘要生成模型,学习视频特征使其包含丰富的语义信息,进而同时生成描述原始视频内容的视频摘要和文本摘要。...
任务旨在通过生成简短的视频片段来表示原视频的主要内容,针对现有方法缺乏对语义信息探索的问题,提出了一种融合语义信息的视频摘要生成模型,学习视频特征使其包含丰富的语义信息,进而同时生成描述原始视频内容的视频摘要和文本摘要。该模型分为3个模块:帧级分数加权模块、视觉-语义嵌入模块、视频文本描述生成模块。帧级分数加权模块结合卷积网络与全连接层以获取帧级重要性分数;视觉-语义嵌入模块将视觉特征与文本特征映射到同一空间,以使2种特征相互靠近;视频文本描述生成模块最小化视频摘要的生成描述与文本标注真值之间的距离,以生成带有语义信息的视频摘要。测试时,在获取视频摘要的同时,该模型获得简短的文本摘要作为副产品,可以帮助人们更直观地理解视频内容。在SumMe和TVSum数据集上的实验表明:该模型通过融合语义信息,比现有先进方法取得了更好的性能,在这2个数据集上F-score指标分别提高了0.5%和1.6%。
展开更多
关键词
视频
摘要
视觉-语义嵌入空间
视频文本描述
视频
关键帧
长短期记忆(LSTM)模型
下载PDF
职称材料
题名
基于多模态融合与多层注意力的视频内容文本表述研究
被引量:
9
1
作者
赵宏
郭岚
陈志文
郑厚泽
机构
兰州理工大学计算机与通信学院
出处
《计算机工程》
CAS
CSCD
北大核心
2022年第10期45-54,共10页
基金
国家自然科学基金(62166025,51668043)
甘肃省重点研发计划(21YF5GA073)。
文摘
针对现有视频内容文本表述模型存在生成的文本表述单一、准确率不高等问题,提出一种融合帧级图像及音频信息的视频内容文本表述模型。基于自注意力机制设计单模态嵌入层网络结构,并将其嵌入单模态特征中学习单模态特征参数。采用联合表示、协作表示两种方法对单模态嵌入层输出的高维特征向量进行双模态特征融合,使模型能关注视频中不同目标间的交互关系,从而生成更加丰富、准确的视频文本表述。使用大规模数据集对模型进行预训练,并提取视频帧、视频所携带的音频等表征信息,将其送入编解码器实现视频内容的文本表述。在MSR-VTT和LSMDC数据集上的实验结果表明,所提模型的BLEU4、METEOR、ROUGEL和CIDEr指标分别为0.386、0.250、0.609和0.463,相较于MSR-VTT挑战赛中IIT DeIhi发布的模型,分别提升了0.082、0.037、0.115和0.257,能有效提升视频内容文本表述的准确率。
关键词
视频
内容
文本
描述
多模态融合
联合表示
协作表示
自注意力机制
Keywords
text description of video content
multi-modal fusion
joint representation
collaborative representation
self attention mechanism
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
融合语义信息的视频摘要生成
被引量:
2
2
作者
滑蕊
吴心筱
赵文天
机构
北京理工大学计算机学院
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2021年第3期650-657,共8页
基金
国家自然科学基金(61673062,62072041)。
文摘
任务旨在通过生成简短的视频片段来表示原视频的主要内容,针对现有方法缺乏对语义信息探索的问题,提出了一种融合语义信息的视频摘要生成模型,学习视频特征使其包含丰富的语义信息,进而同时生成描述原始视频内容的视频摘要和文本摘要。该模型分为3个模块:帧级分数加权模块、视觉-语义嵌入模块、视频文本描述生成模块。帧级分数加权模块结合卷积网络与全连接层以获取帧级重要性分数;视觉-语义嵌入模块将视觉特征与文本特征映射到同一空间,以使2种特征相互靠近;视频文本描述生成模块最小化视频摘要的生成描述与文本标注真值之间的距离,以生成带有语义信息的视频摘要。测试时,在获取视频摘要的同时,该模型获得简短的文本摘要作为副产品,可以帮助人们更直观地理解视频内容。在SumMe和TVSum数据集上的实验表明:该模型通过融合语义信息,比现有先进方法取得了更好的性能,在这2个数据集上F-score指标分别提高了0.5%和1.6%。
关键词
视频
摘要
视觉-语义嵌入空间
视频文本描述
视频
关键帧
长短期记忆(LSTM)模型
Keywords
video summarization
visual-semantic embedding space
video captioning
video key frame
Long Short-Term Memory(LSTM)model
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多模态融合与多层注意力的视频内容文本表述研究
赵宏
郭岚
陈志文
郑厚泽
《计算机工程》
CAS
CSCD
北大核心
2022
9
下载PDF
职称材料
2
融合语义信息的视频摘要生成
滑蕊
吴心筱
赵文天
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2021
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部