期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于双流网络的视频级对比学习
1
作者
梁梦姿
刘宏
+1 位作者
李希
徐大宏
《计算机与数字工程》
2023年第5期1174-1178,1198,共6页
对比学习在自监督视频表示学习领域受到广泛关注。现有的方法大多是在片段级或帧级上进行对比学习,从而限制在长时间范围内对视频全局时空的利用。为了解决上述问题,论文提出了一种基于双流网络的视频级对比学习方法(VCTN)。该方法从网...
对比学习在自监督视频表示学习领域受到广泛关注。现有的方法大多是在片段级或帧级上进行对比学习,从而限制在长时间范围内对视频全局时空的利用。为了解决上述问题,论文提出了一种基于双流网络的视频级对比学习方法(VCTN)。该方法从网络结构和数据增强两个方面加强了对全局时空的利用。在网络结构上,论文采用卷积神经网络(CNN)和Transformer的双流架构提取视频的时间和空间特征。在数据增强上,论文提出了一种基于时间段的数据增强采样方法。该方法融合了随机、稀疏和整体采样策略,用来形成视频级的正对。大量的实验表明,论文的方法(VCTN)能学到良好的视频表示,并在下游动作分类任务上取得较高的准确率。
展开更多
关键词
双流网络
视频级对比学习
全局时空
下载PDF
职称材料
题名
基于双流网络的视频级对比学习
1
作者
梁梦姿
刘宏
李希
徐大宏
机构
湖南师范大学信息科学与工程学院
出处
《计算机与数字工程》
2023年第5期1174-1178,1198,共6页
文摘
对比学习在自监督视频表示学习领域受到广泛关注。现有的方法大多是在片段级或帧级上进行对比学习,从而限制在长时间范围内对视频全局时空的利用。为了解决上述问题,论文提出了一种基于双流网络的视频级对比学习方法(VCTN)。该方法从网络结构和数据增强两个方面加强了对全局时空的利用。在网络结构上,论文采用卷积神经网络(CNN)和Transformer的双流架构提取视频的时间和空间特征。在数据增强上,论文提出了一种基于时间段的数据增强采样方法。该方法融合了随机、稀疏和整体采样策略,用来形成视频级的正对。大量的实验表明,论文的方法(VCTN)能学到良好的视频表示,并在下游动作分类任务上取得较高的准确率。
关键词
双流网络
视频级对比学习
全局时空
Keywords
two-stream network
video-level contrastive learning
global space-time
分类号
TP393 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于双流网络的视频级对比学习
梁梦姿
刘宏
李希
徐大宏
《计算机与数字工程》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部