In this paper, the Kalman filter is used to predict image feature positionaround which an image-processing window is then established to diminish feature-searching area andto heighten the image-processing speed. Accor...In this paper, the Kalman filter is used to predict image feature positionaround which an image-processing window is then established to diminish feature-searching area andto heighten the image-processing speed. According to the fundamentals of image-based visual servoing(IBVS), the cerebellar model articulation controller (CMAC) neural network is inserted into thevisual servo control loop to implement the nonlinear mapping from the error signal in the imagespace to the control signal in the input space instead of the iterative adjustment and complicatedinverse solution of the image Jacobian. Simulation results show that the feature point can bepredicted efficiently using the Kalman filter and on-line supervised learning can be realized usingCMAC neural network; end-effector can track the target object very well.展开更多
In order to ensure that the off-line arm of a two-arm-wheel combined inspection robot can reliably grasp the line in case of autonomous obstacle crossing,a control method is proposed for line grasping based on hand-ey...In order to ensure that the off-line arm of a two-arm-wheel combined inspection robot can reliably grasp the line in case of autonomous obstacle crossing,a control method is proposed for line grasping based on hand-eye visual servo.On the basis of the transmission line's geometrical characteristics and the camera's imaging principle,a line recognition and extraction method based on structure constraint is designed.The line's intercept and inclination are defined in an imaging space to represent the robot's change of pose and a law governing the pose decoupling servo control is developed.Under the integrated consideration of the influence of light intensity and background change,noise(from the camera itself and electromagnetic field)as well as the robot's kinetic inertia on the robot's imaging quality in the course of motion and the grasping control precision,a servo controller for grasping the line of the robot's off-line arm is designed with the method of fuzzy control.An experiment is conducted on a 1:1 simulation line using an inspection robot and the robot is put into on-line operation on a real overhead transmission line,where the robot can grasp the line within 18 s in the case of autonomous obstacle-crossing.The robot's autonomous line-grasping function is realized without manual intervention and the robot can grasp the line in a precise,reliable and efficient manner,thus the need of actual operation can be satisfied.展开更多
A robust visual servoing system is investigated on a humanoid robot which grasps a brush in Chinese calligraphy task.The system is implemented based on uncalibrated visual servoing controller utilizing Kalman-Bucy fil...A robust visual servoing system is investigated on a humanoid robot which grasps a brush in Chinese calligraphy task.The system is implemented based on uncalibrated visual servoing controller utilizing Kalman-Bucy filter,with the help of an object detector by continuously adaptive MeanShift(CAMShift) algorithm.Under this control scheme,a humanoid robot can satisfactorily grasp a brush without system modeling.The proposed method is shown to be robust and effective through a Chinese calligraphy task on a NAO robot.展开更多
Welding path planning can substitute for the manual teaching process of the robot and can promote the autonomous level of the robotic welding. A path planning method by visual servoing was presented, in which the opti...Welding path planning can substitute for the manual teaching process of the robot and can promote the autonomous level of the robotic welding. A path planning method by visual servoing was presented, in which the optimal angle of charge-coupled device (CCD) camera was also planned. Aiming at planning two forms of kinked line seams, obtuse angle seam and right angle seam, a practicable solution was put forward. In this solution, the intersection of two adjacent straight segments is detected in each local seam image, and if intersection is found, the seam errors are calculated using the next straight segment. The experimental results show that kinked line seam can be well planned using this solution.展开更多
In this paper,a method with an eye-in-hand configuration is developed to hit targets during visual tracking for the TLS(Tele-Light Saber) game.It is not necessary to calibrate camera parameters and predict the traject...In this paper,a method with an eye-in-hand configuration is developed to hit targets during visual tracking for the TLS(Tele-Light Saber) game.It is not necessary to calibrate camera parameters and predict the trajectory of the moving object.Firstly,the expression of the image Jacobian matrix for the eye-in-hand configuration is proposed,and then an update law is designed to estimate the image Jacobian online.Furthermore,a control scheme is presented and the Lyapunov method is employed to prove asymptotic convergence of image errors.No assumption for the moving objects is needed.Finally,both simulation and experimental results are shown to support the approach in this paper.展开更多
Pneumatic driven system is widely used in industrial automation, mainly for relatively simple tasks with open-loop control. Because of the pneumatic system’s compressibility and few stop positions, it was considered ...Pneumatic driven system is widely used in industrial automation, mainly for relatively simple tasks with open-loop control. Because of the pneumatic system’s compressibility and few stop positions, it was considered hard to control in a precise motion control system. With the help of newly developed pneumatic servo control technology, using servo-pneumatic positioning controller now is just as easy as using electro-servo system. This article discusses Web-based servo-pneumatic manipulator control and object recognition and positioning. The authors built a three-degrees-of-freedom (3 DOF) pneumatic manipulator with a servo-pneumatic closed-loop control system and machine vision system in their lab. Web-based tele-operation was a basic ability in this experimental system. After installing a CCD camera, video capture card, and related software developed by the authors, the robot could recognize the user specified object through the Web page and find its position. The remote user could command the robot to move to the position and to grab the object. The critical issues of Web-based control are to integrate hybrid open-architecture mechatronic system through the Web and develop a software language environment characterized by the script. The authors’ experiment showed that pneumatic devices could serve as accurate position control and be controlled through the Web.展开更多
A system for a type of nonholonomic wheeled mobile robots equipped with an uncalibrated camera fixed to the ceiling is investigated.Based on the visual feedback and the state-input transformation,models of uncertain c...A system for a type of nonholonomic wheeled mobile robots equipped with an uncalibrated camera fixed to the ceiling is investigated.Based on the visual feedback and the state-input transformation,models of uncertain chained form systems are presented for the robot-camera systems.Then,new smooth time-varying feedback controllers are proposed to exponentially stabilize the uncertain chained system by using state-scaling and control theories for two cases.The exponential stabilities of the closed-loop uncertain systems are rigorously proved.Simulation results demonstrate the effectiveness of the proposed strategies.展开更多
基金The National Natural Science Foundation of China (59990470).
文摘In this paper, the Kalman filter is used to predict image feature positionaround which an image-processing window is then established to diminish feature-searching area andto heighten the image-processing speed. According to the fundamentals of image-based visual servoing(IBVS), the cerebellar model articulation controller (CMAC) neural network is inserted into thevisual servo control loop to implement the nonlinear mapping from the error signal in the imagespace to the control signal in the input space instead of the iterative adjustment and complicatedinverse solution of the image Jacobian. Simulation results show that the feature point can bepredicted efficiently using the Kalman filter and on-line supervised learning can be realized usingCMAC neural network; end-effector can track the target object very well.
基金Project(2006AA04Z202)supported by the National High Technology Research and Development Program of ChinaProject(51105281)supported by the National Natural Science Foundation of China
文摘In order to ensure that the off-line arm of a two-arm-wheel combined inspection robot can reliably grasp the line in case of autonomous obstacle crossing,a control method is proposed for line grasping based on hand-eye visual servo.On the basis of the transmission line's geometrical characteristics and the camera's imaging principle,a line recognition and extraction method based on structure constraint is designed.The line's intercept and inclination are defined in an imaging space to represent the robot's change of pose and a law governing the pose decoupling servo control is developed.Under the integrated consideration of the influence of light intensity and background change,noise(from the camera itself and electromagnetic field)as well as the robot's kinetic inertia on the robot's imaging quality in the course of motion and the grasping control precision,a servo controller for grasping the line of the robot's off-line arm is designed with the method of fuzzy control.An experiment is conducted on a 1:1 simulation line using an inspection robot and the robot is put into on-line operation on a real overhead transmission line,where the robot can grasp the line within 18 s in the case of autonomous obstacle-crossing.The robot's autonomous line-grasping function is realized without manual intervention and the robot can grasp the line in a precise,reliable and efficient manner,thus the need of actual operation can be satisfied.
基金Supported by the National Natural Science Foundation of China(No.61221003)
文摘A robust visual servoing system is investigated on a humanoid robot which grasps a brush in Chinese calligraphy task.The system is implemented based on uncalibrated visual servoing controller utilizing Kalman-Bucy filter,with the help of an object detector by continuously adaptive MeanShift(CAMShift) algorithm.Under this control scheme,a humanoid robot can satisfactorily grasp a brush without system modeling.The proposed method is shown to be robust and effective through a Chinese calligraphy task on a NAO robot.
文摘Welding path planning can substitute for the manual teaching process of the robot and can promote the autonomous level of the robotic welding. A path planning method by visual servoing was presented, in which the optimal angle of charge-coupled device (CCD) camera was also planned. Aiming at planning two forms of kinked line seams, obtuse angle seam and right angle seam, a practicable solution was put forward. In this solution, the intersection of two adjacent straight segments is detected in each local seam image, and if intersection is found, the seam errors are calculated using the next straight segment. The experimental results show that kinked line seam can be well planned using this solution.
基金Supported by the National Natural Science Foundation of China(No.60905061)the National Natural Science Foundation of Tianjin(No.08JCYBJC12700)
文摘In this paper,a method with an eye-in-hand configuration is developed to hit targets during visual tracking for the TLS(Tele-Light Saber) game.It is not necessary to calibrate camera parameters and predict the trajectory of the moving object.Firstly,the expression of the image Jacobian matrix for the eye-in-hand configuration is proposed,and then an update law is designed to estimate the image Jacobian online.Furthermore,a control scheme is presented and the Lyapunov method is employed to prove asymptotic convergence of image errors.No assumption for the moving objects is needed.Finally,both simulation and experimental results are shown to support the approach in this paper.
基金Project (No. ZD0107) supported by Natural Science Foundation of Zhejiang Province, China
文摘Pneumatic driven system is widely used in industrial automation, mainly for relatively simple tasks with open-loop control. Because of the pneumatic system’s compressibility and few stop positions, it was considered hard to control in a precise motion control system. With the help of newly developed pneumatic servo control technology, using servo-pneumatic positioning controller now is just as easy as using electro-servo system. This article discusses Web-based servo-pneumatic manipulator control and object recognition and positioning. The authors built a three-degrees-of-freedom (3 DOF) pneumatic manipulator with a servo-pneumatic closed-loop control system and machine vision system in their lab. Web-based tele-operation was a basic ability in this experimental system. After installing a CCD camera, video capture card, and related software developed by the authors, the robot could recognize the user specified object through the Web page and find its position. The remote user could command the robot to move to the position and to grab the object. The critical issues of Web-based control are to integrate hybrid open-architecture mechatronic system through the Web and develop a software language environment characterized by the script. The authors’ experiment showed that pneumatic devices could serve as accurate position control and be controlled through the Web.
基金supported by the National Natural Science Foundation of China under Grant Nos.61374040,61304004 and 61473179the Natural Science Foundation of Shandong Province under Grant Nos.ZR2013FM012 and ZR2014FM007
文摘A system for a type of nonholonomic wheeled mobile robots equipped with an uncalibrated camera fixed to the ceiling is investigated.Based on the visual feedback and the state-input transformation,models of uncertain chained form systems are presented for the robot-camera systems.Then,new smooth time-varying feedback controllers are proposed to exponentially stabilize the uncertain chained system by using state-scaling and control theories for two cases.The exponential stabilities of the closed-loop uncertain systems are rigorously proved.Simulation results demonstrate the effectiveness of the proposed strategies.